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Abstract

Background: Tumor-associated accrual of myeloid derived suppressor cells (MDSC) in the blood,
lymphoid organs and tumor tissues may lead to perturbation of the arginine metabolism and
impairment of the endogenous antitumor immunity. The objective of this study was to evaluate
whether accumulation of MDSC occurred in Th2 prone BALB/c and Thl biased C57BL/6 mice
bearing the C26GM colon carcinoma and RMA T lymphoma, respectively, and to investigate
whether N(G) nitro-L-arginine methyl ester (L-NAME) and sildenafil, both modulators of the
arginine metabolism, restored antitumor immunity.

Results: We report here that MDSC accumulate in the spleen and blood of mice irrespective of
the mouse and tumor model used. Treatment of tumor-bearing mice with either the
phosphodiesterase-5 inhibitor sildenafil or the nitric-oxide synthase (NOS) inhibitor L-NAME
significantly restrained tumor growth and expanded the tumor-specific immune response.

Conclusion: Our data emphasize the role of MDSC in modulating the endogenous tumor-specific
immune response and underline the anti-neoplastic therapeutic potential of arginine metabolism
modulators.

As reviewed in [2], impairment in tumor antigen expres-

Background

An established tumor adopts several strategies to escape
immunosurveillance and this complex phenomenon
results in generation of a site of acquired immune privi-
lege [1]. Over time, local suppression spreads systemi-
cally, thereby weakening immunological barriers that
might protect against tumor metastasis. Tumor-specific
suppression might explain why even immunotherapies
that succeed in inducing systemic immune response are
rarely of clinical effect on tumors.

sion or its processing and presentation by both tumor
cells and antigen presenting cells (APC), release of immu-
nouppressive cytokines and prostaglandins as well as pro-
apoptotic mechanisms may directly and/or indirectly
impair T cell function while favoring tumor cell growth.
Finally, tumor cells may promote development and
recruitment of regulatory T cells (Treg) and myeloid
derived suppressor cells (MDSC). CD4+CD25+*Treg in par-
ticular, represent an essential mechanism of peripheral
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tolerance to self antigens [3]. They selectively express
Foxp3, a forkhead/winged helix transcription factor that
controls master genes in Treg development/function [3].
Several neoplasms associate with CD4+CD25+ Treg accu-
mulation in the blood and/or in tumors, and this may
inversely correlate with patients' survival [4].

MDSC are a heterogeneous population of cells of myeloid
origin [5], and include immature macrophages, granulo-
cytes, dendritic cells (DC) and other myeloid cells [2,5-7].
Whereas in the spleen of normal mice they account for
less than 5% of the nucleated cells, they rapidly accumu-
late in secondary lymphoid organs, blood and tissues dur-
ing inflammation and cancer [6,8]. Several soluble factors
contribute to alteration of the normal myelopoiesis and
recruitment of MDSC to peripheral organs under patho-
logic conditions, including IL-3, IL-6, IL-10, vascular
endothelial growth factor (VEGF), macrophage colony-
stimulating factor (M-CSF) and granulocyte-macrophage
colony-stimulating factor (GM-CSF) [6-8]. In mice,
MDSC are characteristically CD11b*Gr-1+, and may also
express CD31 [9], CD124, IL-4 receptor o-chain [10] and
CD80 [11]. Expression of CD115 on MDSC may correlate
with their ability to mediate development of Treg [12]. In
humans MDSC have been described to accumulate in the
peripheral blood of patients affected by breast, lung, renal
and head and neck carcinomas [6] and in melanoma [13],
but their phenotype is still poorly defined. MDSC impair
T lymphocyte functions through different mechanisms,
including immunosuppressive cytokines and perturba-
tion of the arginine metabolism by inducible nitric oxide
synthase (iNOS), arginase (Arg), and reactive oxygen spe-
cies [14]. More in details, iNOS produces nitric oxide
(NO), which interferes with IL-2 receptor signaling [15],
leading to cell cycle arrest. NO is also a key signaling mol-
ecule in inflammation-driven diseases, including cancer,
where it participates to cancerogenesis, angiogenesis,
tumor cell proliferation and invasion [16]. Furthermore,
high Arg activity depletes arginine from the microenviron-
ment, inhibiting T cell activation and proliferation [17],
and favoring T cell apoptosis [14].

Several Arg and NOS inhibitors have been tested with the
purpose to inhibit tumor development and favor antitu-
mor immunity [18]. As an example, N(G)-monomethyl-
L-arginine as been shown to restore anti-tumor immunity
in vitro [19]. Unfortunately, its use in clinic has been dis-
continued due to severe toxicity [18]. N(G) nitro-L-
arginine methyl ester (L-NAME) has been reported in sev-
eral mouse models to inhibit tumor growth [20-22].
Those studies however, did not investigate a direct corre-
lation of its effects on the endogenous tumor-specific
immune response. More recently, Serafini et al. [23]
reported that phosphodiesterase-5 inhibitors (sildenafil,
tadalafil and vardenafil) down regulate Arg and iNOS
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expression, thereby impairing the immunosuppressive
activity of MDSC. In the mouse models tested, restoration
of T cell immunity correlate with substantial delay in
tumor progression [23].

We evaluated whether accumulation of MDSC occurred in
BALB/c and C57BL/6 mice bearing the C26GM colon car-
cinoma and RMA T lymphoma, respectively, and we
investigated whether L-NAME and sildenafil restored anti-
tumor immunity and delayed tumor growth.

Results and Discussion

MDSC accumulate in the spleen and blood of tumor-
bearing mice

We initially investigated the effect of tumor growth on
myelopoiesis and recruitment of MDSC to peripheral
organs in the well-characterized colon adenocarinoma
C26GM model [24]. This is a more aggressive variant of
the carcinogen-induced undifferentiated colon carcinoma
CT26 [25], genetically modified to secrete GM-CSF [24].
C26GM is particularly interesting owing to its aggressive-
ness (animals are killed by the tumor in less than 2 weeks)
and because of the secretion of GM-CSF, one of the factors
known to alter myleopoiesis during tumor growth [7].
Hence, C26GM cells were injected s.c. in BALB/c mice,
and animals were killed 9 days later, when the tumor mass
had reached the dimension of approximately 600 mm3.
Flow cytometry analysis of the spleen and blood of tumor-
bearing mice showed a dramatic accumulation of
CD11b+*Gr1+ cells in tumor-bearing mice (Fig. 1E and 1F,
respectively) when compared with naive age- and sex-
matched littermates (Fig. 1A and 1B). Quantification of
CD11b*Grl1+ cells demonstrated a statistically significant
increase in both the spleen and blood of tumor-bearing
mice (Fig. 1Tand 1J). Interestingly, a second population of
CD11b*Grl- cells, barely detectable in the spleen of naive
BALB/c mice, became well represented in tumor-bearing
mice, therefore confirming previous reports [24].
CD11b*Grl- cells were already detectable in the blood of
naive BALB/c mice, and marginally increased during
tumor growth (Fig. 1B, F and 1J). It has been reported that
both populations suppress CD8*T lymphocytes [10], sug-
gesting that Gr1+* and Grl- fractions of CD11b+ cells are
differentiation steps of the same MDSC population.
Indeed, CD11b+*Gr1+ cells may differentiate both in vitro
and in vivo into Gr1- cells [26-28].

To verify whether the CD11b+ cells accumulating in
tumor-bearing BALB/c mice were "bona fide" MDSC,
splenic CD11b+ cells were purified by magnetic bead sort-
ing, and tested for their immunosuppressive activity in
standard in vitro proliferation assays. Indeed, CD11b+* cells
purified from C26GM tumor-bearing mice were able to
substantially abrogate the proliferation of BALB/c spleno-
cytes stimulated with either anti-CD3 and anti-CD28 anti-
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Tumor-bearing mice have an expanded pool of MDSC in spleen and blood. Splenocytes and blood cells from naive

(A-D) and tumor bearing BALB/c (E, F) and C57BL/6 mice (G, H) were stained for CDI Ib and Gr| markers and analyzed by

flow cytometry as detailed in the Materials and Methods section. Dot plot panels are representative of 8 independent experi-
ments for a total 10 naive (A, B) and 38 tumor-bearing BALB/c mice (E, F) and 15 naive (C, D) and 15 RMA-bearing C57BL/6

mice (G, H), respectively. Histograms report the percentage of CD | 1b* Grl-and CDI1b* Grl* cells as aggregated data (aver-
age £ SD) for the BALB/c (I, ) and the C57BL/6 models (K, L), respectively. Statistic analysis of collected data was performed
using the Student's T test; ***p < 0.001, *%0.001 < p < 0.05.
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bodies (Fig. 2A) or y-irradiated C57BL/6 splenocytes (Fig.
2B).

The immune response to pathogens and tumors is geneti-
cally controlled, and may diverge in different mouse
strains. As an example, BALB/c mice are considered a Th2
prone strain, whereas Th1 responses dominate in C57BL/
6 mice. Because Th2-associated cytokines (e.g. IL-6) and
other soluble factors are needed to alter normal myelopoi-
esis and favor recruitment of MDSC to peripheral organs
[6-8], and both Th1 (IFN-y) and Th2 (IL-13) cytokines are
required for activation of MDSC [10], a balance between
Th1 and Th2 immune responses may be required for
MDSC accumulation and immunosuppressive function
during tumor progression. To investigate whether similar
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populations of MDSC accumulated also in a Th1-prone
strain upon tumor challenge, C57BL/6 mice were
implanted s.c. with RMA cells, a Rauscher virus-induced T
lymphoma [29]. Because RMA is less aggressive than
C26GM, mice were killed 2 weeks after tumor challenge,
time at which the mass had reached a dimension of
approximately 400 mm3. Tumor-associated accumulation
of CD11b+*Gr1+ cells in the blood of C57BL/6 mice was
comparable to the one found in tumor-bearing BALB/c
mice (Fig. 1D, H and 1L and 1B, F and 1], respectively). A
less dramatic but still statistical significant accumulation
of CD11b+Gr1+ cells was evident also in the spleen of
mice bearing RMA lymphomas (Fig. 1C, G and 1K). Accu-
mulation of CD11b*Gr1- cells was less conspicuous in
C57BL/6 mice than in tumor-bearing BALB/c mice (Fig.
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MDSC suppress T cells proliferation. MDSC were purified as CD | Ib* cells from the spleen of C26GM (A, B) and RMA
(C) tumor bearing mice by immunomagnetic beads sorting as detailed in the Materials and Methods section. CD | Ib* cells were
added at a final concentration of 20% to a mixed leukocyte culture set up with splenocytes, as responders, stimulated with anti-
CD3 and anti-CD28 antibodies (A, C) or with an equal number of y-irradiated C57BL/6 splenocytes (B). Data are representa-
tive of at least two experiments and are expressed as the cpm mean % SD of triplicates. Student's T test: *¥0.001 < p < 0.05.
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1K and 1L and 1I and 1J, respectively), and was statisti-
cally significant only when blood samples from naive and
tumor-bearing mice were compared (Fig. 1L). Neverthe-
less, CD11b+ cells purified from RMA tumor-bearing mice
inhibited proliferation of syngenic splenocytes to an
extent comparable to CD11b* cells purified from C26GM
tumor-bearing mice (Fig. 2C).

Hence, tumor-induced altered regulation of myelopoiesis
and accumulation of MDSC is a characteristic common to
Th1 and Th2 strains as well as to tumors of different
aggressiveness. Quantitative and qualitative differences in
MDSC populations found in the two models may depend
on several factors, among which the genetic background,
tumor aggressiveness, and soluble factors released by
tumor and stroma cells, including bone marrow derived
cells, fibroblasts and endothelial cells [30].

Treatment of tumor-bearing mice with Arg and iINOS
inhibitors restrain tumor growth

Accumulation of MDSC in both BALB/c- and RMA-bear-
ing mice suggested that alteration of arginine metabolism

C26GM Tumor Model

http://www.biomedcentral.com/1471-2172/10/1

[31] was a relevant mechanism of immunoescape in these
models, and that drugs able to modulate arginine metab-
olism [18] were potentially useful in crippling the immu-
nosuppressive activity of MDSC and delaying tumor
growth. To verify this hypothesis, BALB/c mice were chal-
lenged s.c. with C26GM cells, and L-NAME or sildenafil
were administered starting on the day of tumor challenge.
To identify the best delivery strategy, drugs were adminis-
tered either i.p. or in the drinking water. As control, ani-
mals were treated with vehicle (i.e., PBS) only. Both
inhibitors significantly delayed tumor growth by approxi-
mately 50% when compared with vehicle-treated mice,
and both regimens were equally effective (Fig. 3A).

Similar experiments were conducted in the RMA model.
Having verified in the C26GM model that the two delivery
strategies were equally effective, and to avoid distress and/
or pain to the animals, drugs were administered in the
drinking water. Also in this model, L-NAME delayed
tumor growth by approximately 50% (Fig. 3B). Con-
versely, sildenafil did not appear to be effective against
RMA lymphoma. The scarce efficacy of sildenafil in

RMA Tumor Model
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Figure 3

Modulators of arginine metabolism restrain tumor growth. BALB/c (A) and C57BL/6 mice (B) were challenged s.c.
with C26GM and RMA cells, respectively. The same day mice were randomly assigned to either one of the following treat-
ments: L-NAME or sildenafil (given i.p. or dissolved in drinking water) or vehicle (PBS) i.p. (see Materials and Methods section
for experimental details). Tumor volume (expressed as mm3) was measured by caliper at day 9 and 15, respectively. Panels
report the cumulated data of at least three independent experiments performed with the following number of animals: C26GM
model: Vehicle: n = 24, L-NAME i.p.: n = |5, L-NAME o.s.: n = 14, Sildenafil i.p.: n = 10, Sildenafil o.s.: n = 5; RMA model: Vehi-
cle:n =15, L-NAME o.s.: n = |5, Sildenafil o.s.: n = 10. Student's T test: ***p < 0.001, *¥0.001 < p < 0.05.
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restraining RMA growth does not appear to be related to
the mouse strain, because Serafini et al. reported an excel-
lent effect of sildenafil in C57BL/6 mice challenged with
the fibrosarcoma MCA203 [23]. This discrepancy may
more likely be related to the characteristics of the two
tumor models (e.g., cytokine production, immunogenic-
ity, aggressiveness, stromal reaction).

Since chronic treatment with NO inhibitors has been
reported to be associated with systemic toxicity [32], we
monitored animal weight, as a measure of potential drug-
related toxicity, and we found no difference between drug-
and vehicle-treated mice in both strains (Fig. 4A and 4B).
The respiratory apparatus (i.e., bronchial tree and lung),
esophagus, kidney, suprarenal gland and liver of L-NAME
treated animals were also macroscopically and microscop-
ically investigated by an expert pathologist and found
with no sign of drug-related toxicity (data not shown).
Absence of drug-related toxicity in our animal models
might be related to the relatively short period of treat-
ment. Indeed, glomerulosclerosis, one of the effects of L-
NAME, is usually found in animals treated for a longer
period of time [33].

C26GM Tumor Model

http://www.biomedcentral.com/1471-2172/10/1

Modification of tumor-associated myelopoiesis induced by
modulators of arginine metabolism

We investigated whether treatment with L-NAME or silde-
nafil modified accrual of MDSC in the spleen and blood
of tumor-challenged mice. Flow cytometry analyses con-
ducted ex vivo the day of mouse killing showed a clear
accumulation of both CD11b*Gr1+and CD11b+Gr1- cells
in the spleen of BALB/c mice bearing C26GM tumors, but
neither L-NAME nor sildenafil altered such recruitment
(Fig 5A). Conversely, CD11b+Gr1+ cells dropped by 50%
in the blood of tumor-bearing mice treated with either L-
NAME or sildenafil, when compared with samples col-
lected from untreated tumor-bearing mice (Fig. 5B). This
was not confirmed in the RMA model, despite a compara-
ble recruitment of CD11b+Gr1+ cells (Fig. 5D). Hence, L-
NAME, although highly effective in restraining tumor
growth in both models, do not appear to consistently per-
turb the tumor-associated recruitment of CD11b*Grl+
cells. To gain further insight on the mechanism underly-
ing the therapeutic effect of L-NAME, we assessed the
enzymatic activity of MDSC cells purified from the spleen
of RMA-bearing mice. Magnetic bead-purified CD11b+
cells from L-NAME treated animals showed a relevant
reduction in Arg activity when compared with those
obtained from control animals treated with vehicle (Fig.

RMA Tumor Model
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Modulators of arginine metabolism do not cause loss of body weight in treated animals. Toxicity of L-NAME and
sildenafil was evaluated as loss of body weight, defined as Delta % = (final weight — initial weight)/initial weight x 100. BALB/c
mice challenged with C26GM cells (A) and C57BL/6 mice challenged with RMA cells (B) were weighed at day 0 and at day 9
and |5, respectively. The experimental groups are described in the legend to Fig. 3.
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Modulators of arginine metabolism alter MDSC accumulation in the blood of tumor-bearing mice. BALB/c and
C57BL/6 mice were challenged s.c. with C26GM and RMA cells, respectively. The same day, mice were randomly assigned to
either one of the following treatments: L-NAME or sildenafil (given i.p. or dissolved in drinking water) or vehicle (PBS; V) i.p.
(see Materials and Methods section for experimental details). Tumor-bearing BALB/c and C57BL/6 mice were killed 9 and |5
day later. Recruitment of CD 1 1b*Grl-and CDI Ib*Grl* cells in the spleen (A, C) and blood (B, D) of tumor-bearing BALB/c
(A, B) and C57BL/6 mice (C, D) was investigated by flow cytometry. Histograms report the percentage of CD| Ib* Grl-and
CDI Ib* Grl* cells as aggregated data (average + SD) for the experimental groups reported in the legend of Fig. 3. Alterna-
tively, magnetic bead sorted CD1 Ib* cells from the spleen of RMA (E) tumor bearing mice were lysed and analyzed for relative
Arg enzyme activity. Student's T test: ***p < 0.001, *¥0.001 < p < 0.05.
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5E), therefore confirming that in vivo L-NAME is a potent
inhibitor of Arg [34].

In both tumor models a reduction statistically significant
of CD11b*Gr1-cells was evident in the blood of sildenafil-
treated mice when compared with untreated ones (Fig. 5B
and 5D). Hence, it might be possible that sildenafil acts
primarily on terminally differentiated CD11b*Gr1- cells
[27]. Together with the notion that in vivo sildenafil treat-
ment reduces the enzymatic activity of iNOS and Arg in
MDSC [23], our findings support the hypothesis that
sildenafil has a potent inhibitory impact on the MDSC-
mediated immunosuppressive mechanisms. Because
sildenafil caused delayed tumor growth and a significant
fall of both MDSC populations only in the C26GM
model, it might be possible that sildenafil-induced con-
tainment of tumor growth is obtained only when myelo-
poiesis is redirected to more physiologic conditions.
These hypotheses need further experimental support.

Treatment with L-NAME does not perturb tumor-draining
lymph node cell composition

Lymph nodes draining a tumor mass (TDLN) or the site of
vaccination rapidly enlarge owing to the accumulation of
myeloid and lymphoid cells [35,36]. We asked whether
arginine metabolism inhibitors could alter recruitment of
T lymphocytes in TDLN. Because L-NAME demonstrated
to be effective in restraining tumor growth in both mod-
els, we focused on this inhibitor. Hence, BALB/c mice
were challenged with C26GM cells and treated with L-
NAME or vehicle as described above. A 3-fold increase in
cell number was evident in TDLN when compared with
LN from naive mice, and was not modified by L-NAME
treatment (Fig. 6A). Flow cytometry analysis of TDLN cells
showed a considerable increase in the number of both
CD4 and CD8 cells (Fig. 6D and 6H, respectively). Curi-
ously enough, the percentage of CD8 and more evidently
of CD4+T cells in TDLN decreased in both L-NAME and
vehicle-treated mice (Fig. 6G and 6C, respectively), sug-
gesting that in TDLN a relevant perturbation of the physi-
ologic equilibrium among the different cell populations
was undergoing, that was not modified by L-NAME.

We recently reported that Treg accumulate in TDLN as
well as in LN draining the site of vaccination [36], there-
fore suggesting that such recruitment is a physiologic hall-
mark of sites were an active immune response is taking
place. Because MDSC can favor induction of Treg [12], we
also investigated whether Treg recruitment in TDLN of
BALB/c mice bearing C26GM tumors was further
increased by tumor-associated MDSC and modified by L-
NAME  treatment. The absolute number of
CD4+CD25+Foxp3+ cells dramatically increased in TDLN,
but was not modified by L-NAME treatment (Fig. 6L).

http://www.biomedcentral.com/1471-2172/10/1

When similar analyses were conducted in TDLN collected
from RMA-bearing C57BL/6 animals, results substantially
overlapped the ones obtained in BALB/c mice bearing
C26GM tumors. Indeed, no substantial differences in per-
centage and absolute number of CD4 and CD8 T cells
were found in L-NAME and vehicle-treated mice (Fig. 6F
and 6], respectively). A slightly and yet statistically signif-
icant reduction in the absolute number of Treg was found
in TDLN from L-NAME treated animals (Fig. 6N). A simi-
lar result was obtained in sildenafil treated animals (abso-
lute number of Treg: 10,00 + 0,24 x 103; n = 5).

All together, these data suggest that L-NAME does not sub-
stantially modify the physiologic perturbation of LN com-
position in TDLN.

Treatment with L-NAME augments the endogenous
antitumor immunity

Our final goal was to investigate the effects of L-NAME on
the endogenous tumor-specific immune response. RMA is
an immunogenic tumor (i.e. upon in vivo growth it spon-
taneously induces an endogenous tumor-specific immune
response [37]), whose immunogenicity is strongly biased
by the expression of dominant viral antigens [38]. Hence,
splenocytes recovered from L-NAME and vehicle-treated
C57BL/6 mice bearing RMA tumors, were specifically res-
timulated in vitro and tested for their ability to recognize
different targets. Flow cytometry analyses showed that cul-
tures from L-NAME-treated mice contained a frequency of
CD8+* T cells producing IFN-y upon RMA challenge (Fig.
7E) higher than the one found in cultures from vehicle-
treated mice (Fig. 7C). IFN-y release was specific because
the percentage of cells challenged with the irrelevant tar-
get EL4G- was at background level in both cultures (Fig.
7F and 7D). RMA-specific response was not due to a in
vitro priming, because cells from naive animals did not
produce IFN-y above background level when challenged
with the targets (Fig. 7A and 7B).

Since it is well known that NO participates in the regula-
tion of various cell activities, to exclude that L-NAME and
sildenafil exerted a direct effect on RMA cells by affecting
doubling time and/or favoring apoptosis, we assessed the
in vitro proliferation potential of RMA cells in the presence
of either one of two drugs. Both L-NAME and sildenafil
neither altered RMA proliferation rate, nor increased
apoptosis (data not shown), therefore excluding this pos-
sibility.

Taken together, these data demonstrate that L-NAME
treatment has the potential to augment the endogenous
antitumor immunity. Because MDSC seem not to block
the early events of T cell activation and IFN-y production
[10], we can hypothesize that L-NAME favors IFN-y pro-
duction by other yet uncovered mechanisms.
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Figure 6

Treatment of tumor-bearing mice with L-NAME does not perturb TDLN cell composition. Cells from TDLN of
C26GM- and RMA-bearing mice treated with L-NAME or vehicle (V) and from LN of naive strain-related mice were either
enumerated (A, B) or stained with T cell markers and analyzed by flow cytometry. Histograms report the percentage and abso-
lute number of CD4* (C, E, and D, F), CD8* (G, |, and H, J), and CD4*CD25*Foxp3* T cells (Terg; K, M, and L, N), respec-
tively, as aggregated data (average + SD) for the experimental groups reported in the legend of Fig. 3. Student's T test: **0.001
< p <0.05, *p < 0.05.
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Figure 7

Treatments with L-NAME improves IFN-y release. C57BL/6 mice were challenged with RMA cells and treated with L-
NAME (E, F) or vehicle (V; panels C and D). After |5 days, animals were killed and their splenocytes were specifically restimu-
lated in vitro. Blasts were tested for IFN-y production (upon challenge with RMA or EL4G-) and analyzed by FACScalibur® after
co-staining with mAb against CD8, CD44 and IFN-y. Panel A and B report representative dot plot analyses of blasts from cul-
tures of naive splenocytes that were challenged with RMA (A) or EL4G- targets (B). The percentage of CD8*IFN-y* cells is
reported in each panel as average + SD of at least five animals for experimental group. The same data is reported in histogram
G together with the statistical analysis. Student's T test: *¥0.001 < p < 0.05.
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Conclusion

Elucidation of the mechanisms by which a growing tumor
eludes immunosurveillance and identification of strate-
gies to overcome tumor-associated immunosuppression
are essential issues that need to be addressed, in order to
obtain the most rewarding clinical benefits from the
application of immunotherapeutic strategies to cancer
patients. Our results, obtained in different tumor models
and murine strains, indicate that tumor growth is associ-
ated with perturbation of myelopoiesis and accumulation
of MDSC. Treatment of tumor-bearing mice with modula-
tors of arginine metabolism may modify such accrual,
augment the endogenous tumor-specific immune
response and restrain tumor growth.

Because neither in our nor in other tumor models inhibi-
tion of MDSC function by different means caused com-
plete tumor regression [21,23,39,40], it is likely that
acting simultaneously on more than one of the know
tumor-associated immunosuppressive mechanisms will
result in more successful therapeutic effects. As an exam-
ple, sildenafil treatment improves the efficacy of adoptive
cell therapy [23]. Further investigation in this direction is
warranted to confirm this hypothesis.

Methods

Cell lines and reagents

C26GM (H-29) is a carcinogen-induced colon carcinoma
subcloned from the CT26 cell line, and genetically modi-
fied to produce GM-CSF [24]. Cells were cultured in
DMEM (Invitrogen, Milano, Italy) supplemented with 2
mM L-glutamine, 150 U/ml streptomycin, 200 U/ml pen-
icillin and 10% heat-inactivated FBS (Invitrogen). RMA
(H-2b) is a Rauscher virus-induced thymoma [29]. EL4G-
(H-2b) is a 9,10-dimethyl-1,2-benzanthracene induced
thymoma [41]. Both cell lines were cultured in RPMI-
1640 (Invitrogen) supplemented with 2 mM L-glutamine,
150 U/ml streptomycin, 200 U/ml penicillin and 10%
heat-inactivated FBS (Invitrogen). Unless specified, all
chemical reagents were from Sigma-Aldrich, and mono-
clonal antibodies (mAb) were from BD PharMingen (San
Diego, CA).

Mice and in vivo experiments

BALB/c (H-24) and C57BL/6 (H-2P) female mice, 8-10
weeks old, were purchased from Charles River (Calco,
Italy), housed in a specific pathogen-free animal facility,
and treated in accordance with the European Union
guidelines, and with the approval of the Institutional Eth-
ical Committee (IACUC approval # 311). Five hundred
thousand C26GM cells and 7 x 10* RMA cells were
injected s.c. on the left flank of BALB/c and C57BL/6 mice,
respectively. L-NAME (given i.p. at 80 mg/Kg/24 h or
added in drinking water at 1 g/L) or sildenafil (Pfizer, New
York, NY, given i.p. at 20 mg/Kg/24 h or dissolved in

http://www.biomedcentral.com/1471-2172/10/1

drinking water at 20 mg/Kg/24 h) were administered start-
ing on the day of tumor challenge. As control, groups of
animals were treated with vehicle (PBS) only. Water was
given ad libitum. Calculation of the dosage of each drug
was based on the assumption that a mouse drinks approx-
imately 3 ml/24 h. Tumor size was evaluated by measur-
ing two perpendicular diameters by a caliper every other
day, and BALB/c and C57BL/6 mice were sacrificed after 9
and 15 days, respectively. When needed, several organs
were collected, fixed in 4% formalin for 6 h, then embed-
ded and included in paraffin wax as previously described
[42]. Five-mm thick sections were cut and stained with
H&E (Bio-Optica, Milano, Italy).

Phenotypic characterization of cell populations

TDLN and LN from naive mice and tumor-challenged
mice were processed on a cell strainer and stained with
FITC-labeled anti-CD4, PE- labeled anti-CD44 and PerCP-
Cy 5.5-labeled anti-CD8 mAb. Dead cells were excluded
by physical parameters and/or by the addition of ToPro-5
(Molecular Probes, Eugene, OR) immediately before flow
cytometry analysis. For enumeration of MDSC cells,
blood and splenocytes from naive and tumor-challenged
mice were stained with FITC-conjugated CD11b and APC-
conjugate  Grl mAb. For = enumeration  of
CD4+CD25*Foxp3+ cells, LN cells were stained with FITC-
labeled anti-CD4, PerCP-Cy 5.5-labeled anti-CD8 and
APC-labeled anti-CD25 (clone PC61) mAb, permeabi-
lized and finally, stained with PE-labeled anti-Foxp3 mAb
(eBioscience, SanDiego, CA) according to the manufac-
turer's instructions. In all experiments, cells were analyzed
on a BD FacsCalibur®.

Intracellular cytokine measurement

Single cell suspensions of splenocytes from naive and
RMA-challenged mice were restimulated in vitro with
mitomycin-c treated RMA cells [37,38]. For intracellular
cytokine measurement, day-5-blasts were challenged in
vitro with RMA or EL4G- cells (1:1 ratio), or phorbol 12-
myristate 13-acete (PMA)/ionomycin, and stained with
FITC-labeled anti-CD44, PE-labelled anti-CD4, PerCP-Cy
5.5-labeled anti-CD8, and APC-labeled anti-IFN-y mAb
as previously described [43].

CD | Ib* cell purification and in vitro functional assays

CD11b+ cells purification was performed with mouse
CD11b MicroBeads (Miltenyi Biotec, Bergisch Gladbach,
Germany) following the manufacturer's instructions.
Purity of the cell population was evaluated by flow cytom-
etry and exceeded 90%. BALB/c splenocytes (6 x 10> cells/
well) were stimulated in wells that had been coated with
3 pg/ml anti CD3 and 2 pg/ml anti-CD28 mADb, or alter-
natively, with an equal number of y-irradiated C57BL/6
splenocytes. Purified splenic CD11b+ cells were added to
the culture so as to constitute 20% of the total cells. After
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3 days of incubation, cultures were pulsed with 3H-Thymi-
dine (1 pCi/well; Amersham Corp., Milan, Italy) for the
last 18 h. The incorporation of 3H-Thymidine by prolifer-
ating T cells (triplicate cultures) was measured by scintil-
lation counting. Alternatively, CD11b* cells were assessed
for enzymatic activity by QuantiChrom™ Arginase Assay
Kit (BioAssay Systems, Hayward, CA) following manufac-
turer's instructions. Results were normalized to 100 cells.

Statistical analyses

Statistical analyses were performed using the Student's T
test. Values were considered statically significant for p <
0.05.
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