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Abstract

Background: Interferon regulatory factors (IRFs), which can be identified based on a unique helix-turn-helix DNA-
binding domain (DBD) are a large family of transcription factors involved in host immune response,
haemotopoietic differentiation and immunomodulation. Despite the identification of ten IRF family members in
mammals, and some recent effort to identify these members in fish, relatively little is known in the composition of
these members in other classes of vertebrates, and the evolution and probably the origin of the IRF family have
not been investigated in vertebrates.

Results: Genome data mining has been performed to identify any possible IRF family members in human, mouse,
dog, chicken, anole lizard, frog, and some teleost fish, mainly zebrafish and stickleback, and also in non-vertebrate
deuterostomes including the hemichordate, cephalochordate, urochordate and echinoderm. In vertebrates, all ten
IRF family members, i.e. IRF-1 to IRF-10 were identified, with two genes of IRF-4 and IRF-6 identified in fish and
frog, respectively, except that in zebrafish exist three IRF-4 genes. Surprisingly, an additional member in the IRF
family, IRF-11 was found in teleost fish. A range of two to ten IRF-like genes were detected in the non-vertebrate
deuterostomes, and they had little similarity to those IRF family members in vertebrates as revealed in genomic
structure and in phylogenetic analysis. However, the ten IRF family members, IRF-1 to IRF-10 showed certain
degrees of conservation in terms of genomic structure and gene synteny. In particular, IRF-1, IRF-2, IRF-6, IRF-8 are
quite conserved in their genomic structure in all vertebrates, and to a less degree, some IRF family members, such
as IRF-5 and IRF-9 are comparable in the structure. Synteny analysis revealed that the gene loci for the ten IRF
family members in vertebrates were also quite conservative, but in zebrafish conserved genes were distributed in a
much longer distance in chromosomes. Furthermore, all ten different members are clustered in respectively
different clades; but the IRF-11 was clustered with one in sea urchin.

Conclusions: In vertebrates, the ten well-characterized IRF family members shared a relatively high degree of
similarity in genomic structure and syntenic gene arrangement, implying that they might have been evolved in a
similar pattern and with similar selective pressure in different classes of vertebrates. Genome and/or gene
duplication, and probably gene shuffling or gene loss might have occurred during the evolution of these IRF
family members, but arrangement of chromosome or its segment might have taken place in zebrafish. However,
the ten IRF family members in vertebrates and those IRF-like genes in non-vertebrate deuterostomes were quite
different in those analyzed characters, as they might have undergone different patterns of evolution.
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Background

Interferon regulatory factors (IRFs) were identified ori-
ginally as transcription factors in the regulation of inter-
feron expression [1]. Over the last a few decades, these
factors have been the focus of many immunological and
medical studies [2,3], and it has been shown that they
have diversified functions in immune responses, haema-
topoietic differentiation and immune modulation [4-6].
These transcription factors posses a unique ‘tryptophan
cluster’” DNA-binding domain (DBD) [7], which is
responsible for binding to the IFN-regulatory factor ele-
ment present in the IFN-B promoter [8]. Since the identi-
fication of the first IRF, IRF-1, as a protein binding to the
cis-acting DNA elements of the IEN-B gene, a total of ten
members has been identified in vertebrates with func-
tions from activators (e.g., IRF-1, IRF-3, IRF-5, IRF-9 and
IRF-10), to repressors (e.g., IRF-8); and some of them
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(e.g., IRF-2, IRF-4, and IRF-7) also exert the two func-
tions [3,4,9,10]. Previous research has largely focused on
the function of individual IRFs in mammals [8,11,12].
However, the composition and the function of these IRF
family members are less investigated in other classes of
vertebrates [13]. In fish, a few members, such as IRF-1,
IRF-2 and IRF-7 have been cloned in some aquacultured
species [14-18], and recently a total of eleven IRF family
members has been identified in zebrafish Dario rerio [19].

In an attempt to clearly delineate the evolution of IRF
family lineage, we analyzed the draft genomes of human
(Homo sapiens), mouse (Mus musculus), dog (Canis _famil-
iaris), chicken (Gallus gallus), anole lizard (Anolis carolin-
esis), frog (Xenopus tropicalis), zebrafish (Dario rerio), fugu
(Takifugu rubripes), stickleback (Gasterosteus aculeatus),
medaka (Oryzias latipes) to systematically identify all IRF
members in each species. The searched results were
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Figure 1 Genomic structure of IRF-1 in different classes of vertebrates. The gene names listed on the right are as the same as those in
Table 1 and in Additional file 1. Exons are expressed as black boxes, and introns as lines. The size of exons is indicated above the boxes in bp,
and the size of introns below the lines also in bp. The length of exons indicated as black boxes and of introns indicated as straight lines is
proportional to their bp sizes, but the concave-lines are non-proportional. Human (Homo sapiens), mouse (Mus musculus) and dog (Canis
familiaris), chicken (Gallus gallus), anole lizard (Anolis carolinensis), frog (Xenopus tropicalis), and zebrafish (Dario rerio) and stickleback (Gasterosteus
aculeatus) represent vertebrates in classes of mammal, avian, reptile, amphibian and piscine, as also indicated in Figures 2 to 11.
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further compared with literature and the location of each
member in the IRF family was mapped physically on chro-
mosomes in human, mouse, dog, chicken, anole lizard,
frog and zebrafish representing classes of mammal, avian,
reptile, amphibian and piscine. In addition, any possible
IRF-like genes were identified in some non-vertebrate
deuterostomes, including the hemichordate, acorn worm
Saccoglossus kowalevskii, the echinoderm, sea urchin
Strongylocentrotus purpuratus, the cephalochordate, lance-
let (amphioxus) Branchiostoma floridae and the urochor-
date, sea squirt Ciona intestinalis. The conservation in the
genome organization of individual IRF family members
and the synteny in their gene loci were analyzed. The pos-
sible evolutionary mechanisms in the origination of IRF
family members were then discussed.

Results

A total of ten members in the IRF family, i.e., IRF- 1 to
10 have been identified in vertebrates, with another
member named as IRF-11 in teleost fish, as also in
another study [19]. All these members, despite their
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diversified functions, share a conserved motif of a five
tryptophan pentad repeat, with three of them, W-x-
[DNH]-x(5)-[LIVE]-x-[IV]-P-W-x-H-x(9,10)-[DE]-x(2)-
[LIVF]-F-[KRQ]-x-[WR]-A, contacting with DNA
sequence and recognizing the AANNGAAA sequence
[7]. In mammals, IRF-10 was not found in human and
mouse. In zebrafish, stickleback, frog, anole lizard,
chicken and dog, all ten members were detected. How-
ever in chicken, IRF-3 and IRF-9 were not found. In
addition, any possible IRF-like genes were identified in
non-vertebrate deuterostomes, with the finding of three
IRF genes in hemichordate, the acorn worm Saccoglos-
sus kowalevskii, two in echinoderm, the sea urchin
Strongylocentrotus purpuratus, ten in cephalochordate,
the lancelet Branchiostoma floridae and nine in uro-
chordate, the sea squirt Ciona intestinalis.

IRF-1 to IRF-11 in vertebrates

IRF-1

Genomic organizations of IRF- 1 to 11 in vertebrates
were illustrated in Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11.
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Figure 2 Genomic structure of IRF-2 in different classes of vertebrates. The gene names, and exon-intron organizations, as well as the
vertebrates are expressed in the same way as appeared in Figure 1, and so for Figures 3 to 10. The gene name followed with -seg indicates
that the gene only has a sequence segment in database, as also indicated in Table 1 and in Additional file 1, and also in other figures.
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IRF-1 was identified in all vertebrates examined in the
present study. The size of genomic structure of IRF-1
varied from 2163 to 9028 bp, with the longest observed
in anole lizard, and shortest in stickleback (Figure 1).
The IRF-1 all had a nine exon and eight intron structure
in genome, except that in zebrafish eight exons were
present. It is interesting to note that the size of the first
two exons is the same in all vertebrates, and the first
three is the same from frog to mammal. The first four
exons were also the same in size in chicken and mam-
mals, with the equal size in the seventh and eighth
exons in mammals (Figure 1).

The intronic architecture of the examined IRFs is
listed in Table 1. All intron phases are well conserved in
IRF-1 with introns 1, 4, 7 in phase 0, introns 2, 3, 5, 6,
and 8 in phase 1, except that in zebrafish, the third
intron in other vertebrates might have lost in zebrafish
IRF-1, as also indicated in the exon-intron organization
of zebrafish IRF-1 (Figure 1).
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IRF-2
The genomic structure of IRF-2 has a range of 5205 to
52724 bp in length from fish to mammals, with the
shortest observed in stickleback (Figure 2). The first
three exons are quite conserved in size in all the verte-
brates, except that the third exon in other vertebrates
might have split into two exons in anole lizard. The
other remaining exons were either identical in size, e.g.,
the two 47 bp exons and the 165 bp exons, or varied in
a small range, e.g., from 112 to 118 bp in the fifth exon
for all vertebrates except in fish, but in the sixth exon in
anole lizard (Figure 2). However, the structure of IRF-2
in stickleback differed from other vertebrates, with the
presence of nine exons. Analyses of exon sizes indicated
that the sixth exon in other vertebrates might have split
into two exons in stickleback (Figure 2).

Analyses of intron number and phase revealed a high
degree of conservation in IRF-2 genes in vertebrates.
However, the third and the sixth exons in other
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Figure 3 Genomic structure of IRF-3 in different classes of vertebrates, except that in chicken the IRF-3 was not found.
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Figure 4 Genomic structure of IRF-4 in different classes of vertebrates. Multi-copy genes of IRF-4 were found in teleost fish.
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vertebrates were interrupted by a new phase 0 and
phase 1 intron in anole lizard and stickleback, respec-
tively (Table 1). Comparisons of the exon-intron struc-
ture and the intron phase between IRF-1 and IRF-2 in
vertebrates imply that they might have been derived
from a common ancestor.

IRF-3

The IRF-3 genomes varied considerably in their size,
ranging from 2868 to 14802 bp and in the exon-intron
organization (Figure 3). A conserved structure was
observed in the size and organization for IRF-3 in
human and mouse. However, it appears possible that

the first exon is missing in dog IRF-3 when compared
with that in human and mouse. With further searching,
sequence gaps were found in the upstream of coding
region in dog IRF-3; so whether the first exon is missing
in dog IRF-3 requires further sequencing work. In zeb-
rafish and frog, the IRF-3 had eight and nine exons
respectively, and in both stickleback and anole lizard it
has ten exons (Figure 3). Surprisingly, IRF-3 was not
found in chicken.

Despite the variation in the exon-intron organization,
phases for the first four introns of IRF-3 were the same
in vertebrates from fish to mammals, except the
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Figure 5 Genomic structure of IRF-5 in different classes of vertebrates.
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difference in phases of the third and fourth introns in
zebrafish IRF-3 and the sequence gap in dog IRF-3
(Table 1).

IRF-4

The genome of IRF-4 had a high degree of similarity in
vertebrates from anole lizard to mammals in terms of
the number of exons and their size (Figure 4). Several
exons, such as the second, the fifth and sixth exons
were of the same size in anole lizard, chicken, mouse
and human. The size of exons was completely the same
in human and mouse except the last one, and the IRF-4
in anole lizard and chicken was quite similar in the
number of exons and their size. IRF-4 in dog had an
additional exon, and the first two exons in dog might
have been resulted from the separation of the first exon

in other mammals. The genome of IRF-4 in frog and
fish showed marked diversification when compared with
IRF-4 in other vertebrates, with the presence of seven
exons in frog.

Unexpectedly, three IRF-4-like genes were identified in
zebrafish, which were named as the followings: fish spe-
cies abbreviation-IRF-4-chromosome location-percent
identity to human IRF-4-public protein id. For example,
ddIRF-4-chr2-60.7%-EN6560, indicates zebrafish IRF-4
located on chromosome 2 with 60.7% identity to human
IRF-4 and Ensembl database id ENSDARG0000006560,
and other two IRF-4 were named as: ddIRF-4-chr20-1-
52.0%-EN55374, ddIRF-4-scafNA1075-36.3%-EN35766.
However, only two IRF-4 genes were observed in other
teleost fish, such as in stickleback, galRF-4-groupllI-
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Figure 6 Genomic structure of IRF-6 in different classes of vertebrates. Two identical IRF-6 genes were found in frog.

56.8%-EN16461, galRF-4-groupVIII-52.7%-EN4966; and
in medaka, olIRF-4-chr4-56.7%-EN12712, olIRF-4-
chr17-44.7%-EN17242; and in fugu, trIRF-4-scaf107-
49.7%-EN2946, and trIRF-4-scaf305-52.5%-EN11568.
The three IRF-4 genes in zebrafish varied in their size
and genome organization, and were remarkably different
from their mammalian counterparts in terms of exon
sizes and intron phases (Table 1) although the whole
gene structure of ddIRF-4-scafNA1075 could not be
identified due to the sequence gaps in the upstream of
coding region. However, the stickleback IRF-4-2 was
probably comparable with the zebrafish IRF-4-C2
(Figure 2).

The intron phases were quite conserved in IRF-4 genes
from anole lizard to mammals with introns 1, 3 and 7 in

phase 0, and introns 2, 4, 5, 6 in phase 1 except the bias
in dog which might have resulted from the insertion of
the first exon in other vertebrates by a phase 0 intron. Of
particular interest is the variation in intron phases in
multi-copy genes of IRF-4 in teleost fish (Table 1).

IRF-5

One IRF-5 gene was found in vertebrates from fish to
mammals (Figure 5). IRF-5 in mammals was comparable
in genome structure and exon size. The frog IRF-5 had
also eight exons as their mammalian counterparts, but
the zebrafish IRF-5 had nine exons, with the size of the
first two exons equivalent to the size of the first exon in
frog IRF-5. The stickleback IRF-5 also had nine exons,
thus comparable with the zebrafish. The IRF-5 in anole
lizard was located in scaffold 7080, but was too short to
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Figure 7 Genomic structure of IRF-7 in different classes of vertebrates.
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mouse IRF-7

characterize its gene structure. In chicken, IRF-5 was
located at an unmapped region, with incomplete
sequence information (Figure 5).

Comparisons of vertebrate IRF-5 exon/intron bound-
aries revealed a common intron position distribution
from frog to mammals, with the introns 1, 3 and 7 in
phase 0, and introns 2, 4, 5, 6 in phase 1 (Table 1),
despite that most exons could not be characterized in
the IRF-5 in anole lizard and chicken because of the
incomplete genome sequences. The analyses of the gen-
ome and intron phase revealed that the first exon in
other vertebrates was interrupted by a phase 0 intron in
IRF-5 of zebrafish; and in addition, the IRF-5 in stickle-
back shared some characters in intron phases with IRF-
5 in other vertebrates (Table 1).

IRF-6

The genome organization and exon sizes were quite
conserved for IRF-6 in vertebrates from fish to mam-
mals (Figure 6). In general, the gene consisted of 7
exons with 6 intervening introns, except that in chicken
the IRF-6 had an eight exon structure, with the second
exon in other vertebrate split into two exons (Figure 6).
It is worth emphasizing that frog has two identical IRF-
6 genes (Figure 6).

The intron positions of IRF-6 were strictly conserved
in vertebrates from fish to mammals. The first and the
last introns are in phase 0, while all other introns are in
phase 1 (Table 1). It is interesting to note that the two
IRF-6 genes in frog have the same size and the same
position for each homologous exons and introns
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Figure 8 Genomic structure of IRF-8 in different classes of vertebrates.

anole lizard IRF-8
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130 116

respectively, with the difference only in the size of
introns (Table 1 and Figure 6).

IRF-7

The genome size of IRF-7 varied considerably from 2412
bp in mouse to 24469 bp in anole lizard. The size of
exons and also of introns was variable. However, the
IRF-7 had ten exons in human, nine in mouse, anole
lizard, while it had thirteen exons in chicken. However,
the chicken IRF-7 had sequence gaps in database, and
IRF-7 was incomplete in dog and in frog genome data-
bases (Figure 7).

Surprisingly, the IRF-7 differed in the phase position
from other IRF members, in having a phase 2 intron, not a
phase 0 intron as in other IRF members, separating the
first two exons which encode the DBD region, the most
conserved region in IRFs. The number of introns and
intron phases varied considerably in different IRF-7 genes.
IRF-8
The IRF-8, in general, had a similar exon-intron organi-
zation in vertebrates from fish to mammal, with eight
exons and seven introns (Figure 8), despite that in anole
lizard and frog the IRF-8 had seven exons. The
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Figure 9 Genomic structure of IRF-9 in different classes of vertebrates, except that in chicken the IRF-9 was not found.

comparison of these exons may indicate that the
merged-together of two exons might have occurred in
anole lizard. The first exon could not be identified due
to the sequence gaps in the upstream of frog IRF-8 cod-
ing region (Figure 8).

Among eight IRF-8 sequences from fish to mammal,
the intron phases had exactly the same distribution. The
classes of introns 1, 3, and 7 are in phase 0, leaving the
others in phase 1 (Table 1), except that the fifth intron
in other IRF-8 might have lost in IRF-8 in anole lizard
(Table 1 and Figure 8).

IRF-9

IRF-9 was present in fish, frog, anole lizard, and mam-
mals, but not in chicken (Figure 9). It was comparable in
the whole length, and exon number and size in mam-
mals, although the dog IRF-9 had two closely adjacent

exons at last separated by only 4 bp (GCTT), which is
not consistent with the GT/AG sequence at the donor
and acceptor sites of RNA splicing (Figure 9). The anole
lizard IRF-9 consisted of eight exons with seven introns
as its counterparts in mammals but with larger variation
in the size of introns. In zebrafish and stickleback, the
IRF-9 had nine and ten exons, respectively; but they were
quite comparable. Surprisingly, the Basic Local Align-
ment Search Tool (BLAST) results of predicted frog IRF-
9 protein had a lack of first sixty amino acids in the IRF
DBD region, which may require further study (Figure 9).
The distribution in intron phases for IRF-9 was quite
comparable between mammals and anole lizard, with
the introns 1 and 3 and the last one in phase 0 and
introns 2, 4, 5, 6 in phase 1. However, the similar distri-
bution in intron phases and the comparable exon sizes
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Figure 10 Genomic structure of IRF-10 in different classes of vertebrates. IRF-10 was not found in human and mouse

between IRF-8 and IRF-9 may imply, at least partially,
that these two IRFs have a common origin. On the
other hand, IRF-9 in lower vertebrates showed a high
level of variation in intron phases (Table 1).

IRF-10

IRF-10 was not found in human and mouse, but at least
an eleven-exon genome was present in dog (Figure 10).
The zebrafish IRF-10 had eight exons and seven introns.
However, the IRF-10 in other vertebrates was all incom-
plete. Nevertheless, the identified intron-exon structure
in frog showed considerable variation when compared
with other orthologues in other vertebrates (Figure 10).
It is also quite impossible to summarize any pattern in
the distribution of the intron phases (Table 1).

IRF-11

A new IRF family differing from previously-known ten
members was identified only in teleost fish (Figure 11).

The zebrafish IRF-11 had an eight exon structure in
genome, while the IRF-11 in other teleost fish had an
incomplete sequence data. Above all, these IRF-11 had
the first exons similar to those in IRF-1 and IRF-2. Due
to the incomplete sequences, the intron phase distribu-
tion was only analyzed for zebrafish IRF-11, with the
findings of introns 1 and 6 in phase 0 and all others in
phase 1 (Table 1).

IRF-like genes in other deuterostomes

The survey of several non-vertebrate deuterostome gen-
omes may have broad implication in understanding the
primitive state of vertebrate nervous, immune, and even
cardiovascular systems [20,21]. Recent studies have
revealed several types of immune-related gene families
in these deuterostomes, such as Toll-like receptors and
Ig superfamily, providing insight into the origin of
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Figure 11 Genomic structure of IRF-11 in teleost fish. IRF-11 was only found in teleost, with the full length sequence available for zebrafish
IRF-11. The gene name, exon-intron organization, and the fish species are expressed in a same way as in Figures 1 and 2.
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immune system in chordates and vertebrates [22-24].
Despite a recent effort to identify IRF members in inver-
tebrates [25], any possible IRF genes were identified in
available databases of deuterostomes in the present
study. Two IRF-like genes were identified in sea urchin
Strongylocentrotus purpuratus (Figure 12), three in
acorn worm Saccoglossus kowalevskii (Figure 13), nine
in sea squirt Ciona intestinalis (Figure 14) and ten in
lancelet Branchiostoma florida (Figure 15). Some of
these genes were just sequence segments containing IRF
DBD domains (Figures 13, 14, 15). The genomic struc-
ture of these IRF-like genes was further predicted. The
genome organization varied among these genes, with lit-
tle similarity detected. They showed almost no similarity
to any IRF members of vertebrates in genome organiza-
tion (Figures 1, 2, 3, 4, 5, 6,7, 8,9, 10, 11, 12, 13, 14,
15) and also in sequence (Additional file 1). These IRF-
like genes also had almost no similarity in intron phases,
with the only exception in sea squirt that the IRF-like-
3q-2 and IRF-like-3q-3 have the same intron phases and
comparable gene structure, differing from sea squirt
IRF-like-3q-1 (Table 1).

Synteny analyses

IRF members were located by using BLAST algorithm
to chromosomes or to scaffolds in frog and anole lizard
as their genome wide sequence data is rather limited
(Figures 16, 17, 18, 19, 20, 21, 22, 23, 24). The transcrip-
tion orientation was well conserved in all IRF members,
i.e. from IRF-1 to IRF-10 in all clearly identified geno-
mic sequences for the vertebrates (Figures 16, 17, 18,
19, 20, 21, 22, 23, 24). The two IRF-6 genes in frog,
which were connected together, were transcribed in two
adverse directions (Figure 21). It is further worth
noticing that IRF-3 and IRF-9 were spread on a same
chromosome in zebrafish (Figure 18).

There is certain degree of conservation in the IRF loci
in vertebrates (Figures 16, 17, 18, 19, 20, 21, 22, 23, 24).
The genes adjacent to IRF genes were comparable. The
arrangement or the genes close to IRF genes were con-
served to a large degree in human, mouse and dog, and
chicken (Figures 16, 17, 18, 19, 20, 21, 22, 23, 24). Gen-
ome sequence data in anole lizard and frog was rather
limited, and thus synteny analysis was less informative
in these vertebrates. Genes in IRF gene loci in zebrafish
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Table 1 Distribution in intron phases of IRF coding region in vertebrates and non-vertebrate deuterostomes, including
human, mouse, dog, chicken, anole lizard, frog, zebrafish, stickleback, sea squirt, lancet, sea uchin and acorn worm

Gene Start codon Intron number

1 2 3 4 5 6 7 8 9 10 1 12 13
human IRF-1 * 0 1 1 0 1 1 0 1 .
mouse [RF-1 * 0 1 1 0 1 1 0 1 .
dog IRF-1 * 0 1 1 0 1 1 0 1 .
chicken IRF-1 * 0 1 1 0 1 1 0 1 .
anole lizard IRF-1 * 0 1 1 0 1 1 0 1 .
frog IRF-1 * 0 1 1 0 1 1 0 1 .
zebrafish IRF-1 * 0 1 0 1 1 0 1 .
stickleback IRF-1 * 0 1 1 0 1 1 0 1 .
human IRF-2 * 0 1 1 0 1 1 0 .
mouse IRF-2 * 0 1 1 0 1 1 0 .
dog IRF-2 * 0 1 1 0 1 1 0 .
chicken IRF-2 * 0 1 1 0 1 1 0 .
anole lizard IRF-2 * 0 1 0 1 0 1 1 0 .
frog IRF-2 * 0 1 1 0 1 1 0 .
zebrafish IRF-2-seg * 0 1 1 0 1 1 0
stickleback IRF-2-seg * 0 1 1 0 1 1 1 0
human IRF-3 * 0 1 0 1 1 0 .
mouse RF-3 * 0 1 0 1 1 0 .
dog IRF-3-seg 1 0 1 1 0 .
anole lizard IRF-3 * 0 1 0 1 0 1 1 0 0 .
frog IRF-3 * 0 1 0 1 1 1 1 0 .
zebrafish IRF-3 * 0 1 1 2 2 0 0 .
stickleback IRF-3 * 0 1 0 1 1 1 2 1 0 .
human IRF-4 * 0 1 0 1 1 1 0 .
mouse IRF-4 * 0 1 0 1 1 1 0 *
dog IRF-4-seg 0 0 1 0 1 1 1 0 .
chicken IRF-4 * 0 1 0 1 1 1 0 .
anole lizard IRF-4-seg 0 1 0 1 1 1 0 .
frog IRF-4-seg * 0 0 0 2 1 0 0
zebrafish IRF-4-c2 * 0 1 0 1 1 1 0 .
zebrafish IRF-4-c20 * 0 0 1 0 1 1 1 0 .
zebrafish IRF-4-scafNA1075-seg 1 2 0 0 0 1 .
stickleback IRF-4-1 * 0 2 0 1 0 1 1 1 0 .
stickleback IRF-4-2 * 0 1 0 1 1 0 .
human IRF-5 * 0 1 0 1 1 1 0 .
mouse IRF-5 * 0 1 0 1 1 1 0 .
dog IRF-5-seg * 0 1 0 1 1 1 0
chicken IRF-5-seg 1 1 1 0
anole lizard IRF-5-seg 1 0
frog IRF-5 * 0 1 0 1 1 1 0 .
zebrafish IRF-5 * 0 0 1 0 1 1 1 0 .
stickleback IRF-5 * 0 1 0 2 1 1 1 0 .
human IRF-6 * 0 1 1 1 1 0 .
mouse IRF-6 * 0 1 1 1 1 0 .
dog IRF-6 * 0 1 1 1 1 0 .
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Table 1: Distribution in intron phases of IRF coding region in vertebrates and non-vertebrate deuterostomes, includ-
ing human, mouse, dog, chicken, anole lizard, frog, zebrafish, stickleback, sea squirt, lancet, sea uchin and acorn
worm (Continued)

chicken IRF-6 * 0 1 1 1 1 1 0 .

anole lizard IRF-6 * 0 1 1 1 1 0 0 .

frog IRF-6-1 * 0 1 1 1 1 0 .

frog IRF-6-2 * 0 1 1 1 1 0 .

zebrafish IRF-6 * 0 1 1 1 1 0 .

stickleback IRF-6-seg * 0 1 1 1 1 0 0

human IRF-7 * 2 0 1 0 1 1 1 1 0 .
mouse RF-7 * 2 0 1 0 1 1 1 0 *

dog IRF-7-seg 1 0 0 .
chicken IRF-7 * 2 0 1 2 0 1 1 0 0 0 1 0 .
anole lizard IRF-7 * 2 0 1 0 1 1 1 0 .

frog IRF-7-seg * 0 0 0 0 1 0 0

zebrafish IRF-7 * 2 0 1 0 1 1 1 0 .
stickleback IRF7-seg 0 1 0 0 1 0 1 0 .
human IRF-8 * 0 1 0 1 1 1 0 .

mouse IRF-8 * 0 1 0 1 1 1 0 .

dog IRF-8 * 0 1 0 1 1 1 0 4

chicken IRF-8 * 0 1 0 1 1 1 0 .

anole lizard IRF-8 * 0 1 0 1 1 0 .

frog IRF-8-seg 1 0 1 1 1 0 4

zebrafish IRF-8 * 0 1 0 1 1 1 0 .

stickleback IRF-8 * 0 1 0 1 1 1 0 4

human IRF-9 * 0 1 0 1 1 1 0 .

mouse IRF-9 * 0 1 0 1 1 1 0 .

dog IRF-9 * 0 1 0 1 1 1 0 0 .

anole lizard IRF-9 * 0 1 0 1 1 1 0 .

frog IRF-9-seg 1 0 1 1 1 1 0 .
zebrafish IRF-9 * 0 0 1 0 1 1 1 2 .
stickleback IRF-9-seg * 0 0 0 1 0 0 0 1 0 0
dog IRF-10-seg 0 0 0 1 1 1 1 1 1 0 0
chicken IRF-10-seg 1 0 1 1 1 0 .

anole lizard IRF-10-seg 1 0 2 1 2 1 0 0

frog IRF-10-seg 0 1 1 1 1 0

zebrafish IRF-10 * 0 1 0 1 1 1 0 .

stickleback IRF-10-seg * 0 1 0 1 0 1 0 0

zebrafish IRF-11 * 0 1 1 1 1 0 1 4

medaka IRF-11-seg * 0 1 0

fugu IRF-11-seg * 0 1 0

stickleback IRF-11-seg 0 1 0

sea squirt IRF-like-scaf_162 * 2 0 1 0 0 0 0 0 1 .
sea squirt IRF-like-3g-1 * 0 1 1 0 1 .

sea squirt IRF-like-3g-2 * 0 1 1 1 1 .

sea squirt IRF-like-3g-3 * 0 1 1 1 1 .

sea squirt IRF-like-12qg * 0 1 1 1 0 1 0 0 0 0 .
sea squirt IRF-like-14p * 0 1 1 0 1 1 .

sea squirt IRF-like-seg-1 * 0 1 1 0 0 1
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Table 1: Distribution in intron phases of IRF coding region in vertebrates and non-vertebrate deuterostomes, includ-
ing human, mouse, dog, chicken, anole lizard, frog, zebrafish, stickleback, sea squirt, lancet, sea uchin and acorn
worm (Continued)

sea squirt IRF-like-seg-2 1

sea squirt IRF-like-seg-3 * 1 1

lancet IRF-like-scaf_187-1-seg * 0 1 1 0 1 2 2 1 0 1

lancet IRF-like-scaf_187-2 * 2 2 1 1 0 .

lancet IRF-like-scaf_187-3 * 0 2 1 .

lancet IRF-like-scaf_7 * 0 0 1 1 1 1 0 .

lancet IRF-like-scaf_12 * 0 1 .

lancet IRF-like-scaf_27 * 0 1 2 1 2 2 0 1 .

lancet IRF-like-scaf_48 * 0 1 .

lancet IRF-like-scaf_136 * 0 2 0 2 2 .

lancet IRF-like-scaf_172 * 0 1 1 1 .

lancet IRF-like-scaf_196 * 0 1 1 1 .

sea urchin IRF-like-1 * 2 1 1 1 0 1 1 .

sea urchin IRF-like-2 * 2 0 1 0 1 0 1 1 1 2 .
acorn worm IRF-like-1 * 2 1 2 1 0 1 1 0 1 1 .
acorn worm IRF-like-2 * 2 0 0 1 0 1 1 1 2 .

acorn worm IRF-like-3-seg 2

* indicating start coden; The numbers 0, 1, 2 indicating the intron phase, and phase 0 indicating that intron lies between two codons, phase 1 between the first
and second positions of a codon, phase 2 between the second and third positions of a codon; ¢ indicating stop coden.

164 458 192 375 56 187 168 44 sea urchin IRF-like-1
- - - - - -1 (24844bp)
15119 1838 2414 750 1901 410 768
17 202 178 74 64 74 49 276 315 226 523 sea urchin IRF-like-2
[ e e B G R e R L W
6111 1112 7001 671 1028 1276 637 441 323 552 (REhE]
Figure 12 Predicted genomic structure of IRF-like genes in the sea urchin Strongylocentrotus purpuratus.

65 113 237 183 104 124 174 50 181 144 89 ,
acorn worm |RF-like-1
-1l (10213 bp)
2362 1642 617 752 421 674 1251 147 579 304
143 58 255 178 35 88 150 291 220 478
acorn worm IRF-like-2
e e T
11841 1032 1736 873 436 818 442 854 299
i 105 acorn worm IRF-like-3-seg
-
947 b
661 ( p)
Figure 13 Predicted genomic structure of IRF-like genes and IRF-containing sequence segment in the acorn worm Saccoglossus
kowalevskii. The sequence segment was indicated with -seg in the gene name, as also listed in Table 1 and in Additional file 2.
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Figure 14 Predicted genomic structure of IRF-like genes and IRF-containing sequence segments in the sea squirt Ciona intestinalis. The
sequence segment was indicated with -seg in gene names as also in Table 1 and in Additional file 2.

were overall comparable to their mammalian counter-
parts: Some loci were very similar; for example, the first
gene next to IRF-4, and IRF-4-C20 in fish and to IRF-7
was the same in all vertebrates, and the IRF-8 loci were
quite similar in all vertebrates. But, the conserved genes
may be arranged in a much longer distance on chromo-
somes in fish, e.g., in IRF-2, IRF-3, IRF-5 and IRF-10
loci, and/or in different positions above or below the
IRF gene, e.g., in IRF-1 loci. Despite the absence of IRF-
10 gene in human and mouse, a segment encoding 210
aa was identified in an arrangement conserved in others
of dog and chicken (Figure 24).

The so-called macro-synteny, i.e., comparison of gene
linkage on chromosomes between amphioxus, the

lancelet Branchiostoma floridae and human has revealed
the existence of 17 linkage groups in the lancelet [24],
and the locations of IRF-like genes have been identified
in individual genome linkage groups, in comparison
with IRF genes in different chromosomes of human
[25]. But, IRF-2 could not be traced in these possible
linkage groups in the present study, although Nehyba
et al. [25] hypothesized its existence in linkage groups 6.

Percent identity and phylogeny

IRF- 1 to 9 in vertebrates were compared respectively
with their counterparts in human by using Needleman-
Wunsch global alignment. All identified IRFs in mouse
and dog showed highest homology to their counterparts
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Figure 15 Predicted genomic structure of IRF-like genes and IRF-containing sequence segment in the lancelet Branchiostoma floridae.
The segment was indicated with -seg, and also in Table 1 and in Additional file 2.
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in human (Additional file 1). The percent identity
appeared lower in lower vertebrates, and higher in
higher vertebrates. Interestingly, some members such as
IRF-2, IRF-4, IRF-6 and IRF-8, showed a higher degree
of identity with their human counterparts (42.8% to
92.8%, 36.3% to 92.2%, 56.0% to 97.6, 31.8% to 91.8%
respectively) (Additional file 1), implying that they may
have some evolutionary conservation. Of all the IRF-10
identified in vertebrates, only avian IRF-10 showed some
sequence similarity with the homologue in dog (41.3%
identity, 49.9% similarity).

However, the percent identity of IRF-like genes or seg-
ments in non-vertebrate deuterostomes had less similar-
ity to mammalian IRF members (Additional file 2). The
highest similarity was below 43.6% between lancelet
IRF-like-scaf187-2 and human IRF-8 (Additional file 2).
In all of the four non-vertebrate deuterostomes, some
identified or predicted IRF-like genes had a similarity

above 30% to certain IRF members in human (Addi-
tional file 2).

The phylogenetic relationship of all IRF members
including IRF-1 to IRF-11 in vertebrates and those IRF-
like genes identified in all non-vertebrate deuterostomes
in the preset study was shown in Figure 25. It is appar-
ent that all well-characterized IRF members, i.e., those
from IRF-1 throughout to IRF-10 were clustered into
separate clades. None of IRF-like genes was clustered
within the ten clades containing these already-known
10 IRF members (Figure 25). The IRF-like genes in
lancelet and sea squirt were mostly clustered in each
species. Interestingly, the acorn worm IRF-like-1,
equivalent to SK1 in Nehyba et al. [25] (Additional file
2), was clustered with the clade containing IRF-1 and
IRF-2. Furthermore, it is obvious that the zebrafish IRF-
11 was clustered together with sea urchin IRF-like-1
(Figure 25).
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Figure 16 IRF-1 gene loci in human, mouse, dog, chicken, anole lizard, frog and zebrafish. Conserved genes are boxed, and vertical lines
represent chromosomes; arrows indicate the transcription orientation of genes. Numbers on the side of the lines indicate the distance between
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Discussion

All known IRF members, i.e., from IRF-1 to IRF-10 were
identified in classes of vertebrates, i.e., piscine (except
Chondrichthyans whose genomes are too scarce to ana-
lyze), amphibian, reptile, avian and mammal, despite
that IRF-10 was not found in human and mouse, and
that an additional IRF member was identified in teleost
fish. The absence of IRF-3 and IRF-9 in chicken may be
just a reflection of its incomplete genome sequences;
alternatively these two genes may not exist in chicken at
all. Overall, it is likely that vertebrates have a similar
composition of IRF family members. In a recent study
to investigate the evolution of IRF-like genes in inverte-
brates, Nehyba et al. [25] concluded that IRF family
evolved distinctly in different taxonomical groups within

Bilateria, as in several groups of animals the IRF family
developed to a large number of family members. How-
ever, the comparable number of IRF members in classes
of vertebrates may thus reflect a higher degree of con-
servation, and probably a similar pattern of evolution
and function for these IRFs in vertebrates.

The complexity and diversity of immune systems in
vertebrates increased throughout evolution, and new
genes arose at various time points by gene fission and
fusion [26], and retrotransposition and duplication dur-
ing evolution [27]. The sequencing in whole genomes of
various organisms has been providing opportunities to
trace the origin of genes which comprise the immune
system in vertebrates [28,29]. It is reported that the IRF
genes originated with the appearance of mulitcellular
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animals are present in almost all metazoan groups. In
sponges and placozoans, the number of IRF family
members is two, and five in cnidarians; and in several
groups of animals such as in molluscan, cephalochor-
date, tunicate and vertebrate, the number might have
evolved independently [25].

IRF members in human may be separated into IRF-1
and IRF-4 subgroups, with the former having a C-term-
inal associated domain (IAD2) and the later a different
C-terminal associated domain (IAD1) [3,30]. Using
DBDs and IAD1 respectively, rather than the entire IRF
proteins as in the present study, Nehyba et al. [25] were
able to separate IRF-like genes into IRF-1 and IRF-4
groups in bilaterians, with four genes (as SK1, SP1, BF4,
CI1) identified from each of the four species, acorn
worm, lancelet (amphioxus), sea urchin and sea squirt

being in the super group of IRF-1. In the present study,
the acorn worm IRF-like-1, equivalent to SK1 (Addi-
tional file 2), has a close relationship with the big clade
containing both IRF-1 and IRF-2, and the sea urchin
IRF-like-1 (equivalent to SP1) is clustered with the clade
containing IRF-1 and IRF-2. These two IRF-like genes
may thus have a close evolutionary relationship with
IRF-1 and IRF-2. The lancelet IRF-like-scaf 27 (equiva-
lent to BF4) appeared relatively close with this clade.
But, the CI1, equivalent to sea squirt IRF-like-seg-3 is
just a segment (Figure 14) which was not included in
the present phylogenetic study. However, all IRF mem-
bers identified in vertebrates were clustered in four
groups in the present phylogenetic tree, as reported by
Nehyba et al. [10], i.e., IRF-1 group including IRF-1 and
IRF-2, IRF-3 group including IRF3 and IRF7, IRF-4
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group including IRF-4, IRF-8, IRF-9 and IRF-10, and
IRF-5 including IRF-5 and IRF-6. It can be concluded at
least tentatively that the phylogenetic relationship of
IRF-like genes in non-vertebrate deuterostomes with
those in vertebrates remains, to a large extent, unsolved.
Further sequence analysis as well as possible function
analysis may be required to understand the true phylo-
genetic relationship of these IRF family members in
chordates. If the view that IRF family evolved distinctly
in different taxonomical groups by Nehyba et al. [25]
were true in different groups of chordates, it might be
rather difficult to trace back the origin and the true phy-
logeny of IRF members, unless enormous sequence data
from a variety of organisms are gathered.

However, using the 17 chordate linkage groups con-
structed by Putnam et al. [24] for the comparison of
lancelet and vertebrate genes, Nehyba et al. [25] located
10 human IRF genes, including a segment as syntenic to

other vertebrate IRF-10 in the present study, to four
linkage groups, each of which was related to one of the
four groups of IRF family in vertebrates. But, they also
considered that the distinct IRF genes in lancelet and
their location in eight different linkage groups may sim-
ply represent a pattern of extensive independent evolu-
tion, and at the meantime they recognized that the
lancelet IRF-like-scaf_27 gene (as BF4 in their study),
which has some relationship with the IRF-1 and IRF-2
clade in the present study and was located in the sixth
linkage group to which the human IRF-1 was traced,
may be considered as the most likely gene linked to the
predecessor of vertebrate IRF-1 gene.

It is now generally agreed that a two-fold whole gen-
ome duplication might have occurred in early verte-
brates after their separation from other deuterostomes
[31]. Nehyba et al. [25] suggested that the generation of
ten IRF genes in vertebrates might be resulted also from
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the duplication. On the basis of our data, a plausible
model was proposed for the evolutionary history of IRF
gene family (Figure 26). In this model, all IRF genes
were assumed to have evolved from a common ancestor
that might have undergone duplication and subsequent
mutation or rearrangement prior to the divergence of
urochordates, resulting in multiple IRF genes. Subse-
quent gene duplication of these ancestral IRF genes in
some chordates and vertebrates might represent two
separate evolutionary events. In vertebrates, the IRF
gene might have undergone additional duplication at the
time before fish diverged from their vertebrate ancestor.
Polyploidization in vertebrates may have promoted such
innovation while vertebrate ancestors probably only pos-
sessed single copy of gene found now in multiple copies
in vertebrates [32]. Moreover, eleven to thirteen IRF
genes were identified in jawed fish. Compared with
other vertebrates, teleost fish have an additional mem-
ber, IRF-11, which at least showed some similarity to

the IRF-1 and IRF-2 in the first exons, indicating that
genome, or gene and probably fragment duplication, as
well as gene shuffling might have occurred in fish for
the arising of this new member.

The eleventh member of IRF in fish has been reported
in an early study [19], but all the IRF-11 identified pre-
viously is in fact the IRF-1 in the present study, as
revealed by genome and synteny analyses in the present
study. So, the IRF-11 identified in the present study is a
real new member in the IRF family, and it has limited
similarity with IRF-1 and IRF-2 as shown in their gen-
ome and in phylogenetic analysis.

Interestingly, there are two IRF-4 genes present in
most teleost species and three in zebrafish, but only one
in higher vertebrates, suggesting that in teleost fish,
especially in zebrafish tandem gene duplication or addi-
tional independent chromosome duplication might have
occurred [33]. The similarity in the genome organization
and intron phases in IRF-1 and IRF-2 may indicate that
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these two genes might have evolved from a common
ancestor, by at least partial duplication or gene shuffling;
and this may also be case for IRF-8 and IRF-9. The
genomic organization of some IRF genes, such as IRF-5
in zebrafish (the first two exons), the middle exons of
IRF-6 in chicken and dog, and the IRF-8 in frog and
anole lizard might have also been resulted from gene
shuffling, as also revealed by intron phase analyses.
Furthermore, the copy of another IRF-6 downstream of
the first IRF-6 gene in scaffold_375 in frog also provides
evidence for the independent gene duplication. Regard-
ing the IRF-10, higher vertebrate lineages might have
lost the gene due to redundancy of function or compen-
sation by other genes during evolution, given the con-
served synteny of the IRF-10 locus in the genomes of
vertebrates.

Nevertheless, vertebrates in different classes exhibited
a high degree of conservation in the number of IRF

family members, implying that the IRF family members
might have evolved from common ancestors with simi-
lar evolutionary mechanisms, although multiple genes of
IRF-4 and IRF-6, and even an additional IRF family
member have evolved in lower vertebrates and IRF-3
and IRF-9, and IRF-10 have lost in chicken, and human
and mouse, respectively. The genomic organizations for
IRF-1, IRF-2, IRF-6, IRF-8 and IRF-9 and IRF-4 in
higher vertebrates may be quite conservative. On the
other hand, the comparison of substantial local sharing
of neighbouring genes in different species may enable
the understanding of phylogenetic relationships among
IRF members, or even infer the genome evolution. Com-
parisons of IRF-4, IRF-8, IRF-9 and IRF-10 orthologues
pertaining regions in vertebrates showed that these four
members were co-localized with the Fox family member.
These instances, therefore, were consistent with the
study on Fox family. It seems likely that these four
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members were initially generated by an ancestral dupli-
cation [34]. The presence of conserved synteny but the
lack of gene linkage in IRF orthologous regions in tele-
ost fish when compared with other vertebrates, may
suggest that inversions were more prevalent than trans-
locations in the evolution of IRF locus, and at least
some regions in teleost fish genomes might have under-
gone substantial intra-chromosomal rearrangements
over evolution. Evidence for this conclusion comes from
the comparison of IRF-2, IRF-3, IRF-5, IRF-6, IRF-7 and
IRF-10 pertaining chromosome regions in vertebrates.
The orders of these loci within chromosome segments
in zebrafish are substantially rearranged. However, when
viewed in IRF syntenic map in human, mouse, dog and
chicken, most genes have obvious counterparts in the
syntenic region with the same order. In these instances,
a higher level of conservation in synteny suggests that

similar selective forces might have been operating since
these lineages diverged.

Conclusions

Ten members of IRF family, i.e., from IRF-1 to IRF-10
have been identified in vertebrates, although IRF-3 and
IRF-9 were not found in chicken and IRF-10 not in
human and mouse. However, lower vertebrates such as
frog and fish have multiple genes of IRF-6 and IRF-4,
respectively. Surprisingly, an additional number, IRF-11
was identified only in teleost fish. The genomes of some
IRF family members, such as IRF-1, IRF-2, IRF-6, IRF-8
etc. have conserved structure in terms of exon-intron
organization and also in the distribution of intron
phases. The genes adjacent to IRF genes in vertebrates
are quite comparable, especially in higher vertebrates;
but it seems likely that conserved genes were spread in
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a much longer distance in chromosomes of zebrafish.
The number of IRF family members in different classes
of vertebrates might have been resulted from whole gen-
ome, or gene duplication, or even gene shuffling, and
probably chromosome rearrangement especially in fish.

Methods

Database mining and genome analysis

Genomic sequences were downloaded from current
assemblies within the Ensembl Database http://www.
ensembl.org for human Homo sapiens, mouse Mus mus-
culus, dog Canis familiaris, chicken Gallus gallus, anole
lizard Anolis carolinensis, frog Xenopus tropicalis, zebra-
fish Danio rerio, stickleback Gasterosteus aculeatus,
medaka Oryzias latipes, fugu Takifugu rubripes, and sea
squirt Ciona intestinalis, the Department of Energy Joint
Genome Institute database for lancelet (amphioxus)

Branchiostoma floridae http://genome.jgi-psf.org/Brafl1/
Brafl1.home.html, and National Center for Biotechnol-
ogy Information http://www.ncbi.nlm.nih.gov for acorn
worm Saccoglossus kowalevskii, sea urchin Strongylocen-
trotus purpuratus WGS sequences. Gene prediction was
performed with FGENESH http://www.softberry.ru/
berry.phtml and GENSCAN http://genes.mit.edu/GEN-
SCAN.html. A quantitative sequence analysis with Hid-
den Markov Model (HMM) [35] was used to identify
IRF genes. The DBD regions of IRF already dated in
human and mouse were sorted according to their scores
in HMMs trained on DBD motifs model and were used
to search from the predicted gene database. All pre-
dicted IRF protein sequences were verified by BLASTP
in the NCBI non-redundant protein sequence database
and Ensembl database by using the BLASTP and
TBLASTN programs, and any matches were used to
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refine prediction. The DNA region covering the query
result of each predicted IRF protein coding region and
the corresponding transcripts accessed by Ensemble
database were extracted and the SIM4 program http://
pbil.univ-lyonl.fr/sim4.php was used to reconstruct the
exon-intron structure and calculate the intron phase. All
IRFs and their genomic locations are listed in Additional
files 1 and 2.

Pairwise homology of all examined IRFs

Sequence comparisons of human IRF proteins and other
putative IRFs mined from the examined species were per-
formed with Needleman-Wunsch global alignment by
using the needle program from the EMBOSS package with
default parameters (Gap opening penalty 10.0, Gap exten-
sion penalty 0.5) [36], and the percent identity of the top-
scoring pair was obtained (Additional files 1 and 2).

Phylogenetic analysis of IRFs

For molecular phylogenetic analyses, protein sequences
were first aligned using ClustalW [37]. Phylogenetic ana-
lyses were performed using the neighbor-joining method
within the Mega4.0 program [38]. Data were analyzed
using Poisson correction, and gaps were removed by
pairwise deletion. The bootstrap values of the branches
were obtained by testing the tree 10,000 times.

Identification of conserved genes in IRF syntenic region
from human, mouse, dog, chicken, anole lizard, frog and
zebrafish and stickleback

To analyze the IRF syntenic region in vertebrates, human
IRFs were used as anchor sites. Comparisons of the ortho-
logues flanking the human anchor sites were accom-
plished by BLAST against the following NCBI genome
assemblies: Homo sapiens (Build 36.3), Mus musculus
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(Build 37.1), Canis familiaris (Build 2.1), Gallus gallus
(Build 2.1) on NCBI map viewer, and Anolis carolinensis
(1.0), Danio rerio (Zv6) and Xenopus tropicalis (version
4.1) on Ensembl genome browser. Complete gene lists
compiled from the syntenic region were obtained in these
following regions: Human (chromosome5, 13137051-
133589849; chromosome4, 184663214-186693650;
chromosome9, 54346267-54860926; chromosome6,
336760-2787080; chromosome?7, 128166672-128640622;
chromosomel, 198263393-208046102; chromosomell,
384217-1549726; chromosomel6, 84268781-85146317;
chromosomel4, 23678014-23705614; chromosome20,
29790565-30386475); Mouse (chromosomell, 51912326-
54175041; chromosome8 46970839-48760512;
chromosome7 52253030-52594343, chromosomel3,
30841127-33186181; chromosome6, 29298119-29711359;
chromosomel, 194979306-195196476; chromosome?7,

148265677-149276175; chromosome8, 123105166-
123632218; chromosomel4, 56194511-56228867; chro-
mosome2, 152673782-153157950); Dog (chromosomell,
23231763-25417744; chromosomel6, 48072456-
49811062; chromosomel, 109762805-110195996; chro-
mosome35, 3765639-6182542; chromosomel4,
10477159-10856486; chromosome7, 3729824-11424871;
chromosomel8, 28527750-48830961; chromosome5,
69307830-69996495; chromosome8, 7139778-7162946;
chromosome24, 24192691-24676398); Chicken (chromo-
somel3, 16330227-17520976; chromosome4, 40757647-
41228574; chromosome2, 6766708-77050634;
chromosome Un_random Contig1969; chromosome26,
316853-2993929; chromosome5, 1579936-17138835;
chromosomell, 19359246-19654930; chromosome20,
9989995-10113464); Anole lizard (scaffold_1, scaf-
fold_308, scaffold_270, scaffold_243, scaffold_7087,
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scaffold_13, scaffold_73, scaffold_781, scaffold_474, scaf-
fold_1561); Frog (scaffold_93, scaffold_90, scaffold_587,
scaffold_211, scaffold_11, scaffold_375, scaffold_398, scaf-
fold_120, scaffold_439, scaffold_1295); Zebrafish (chro-
mosome21, 44732965-48302889; chromosomel,
19605403-51285221; chromosomel2, 3671869-4198128;
chromosome?2, 192032-182022; scaffold NA1075, chro-
mosome20, 19100202-31847658; chromosome4,
13813890-22022810; chromosome22, 198423-22346497;
chromosome25, 5026720-25819085; chromosome1l8,
29472647-29955285; chromosomel2, 22543362-
22592525; chromosome23, 835503-15973618).

Additional file 1: IRF genes identified in vertebrates. Table | IRF
genes identified in vertebrates from fish to mammals, including human,
mouse, dog, chicken, anole lizard, frog, zebrafish, stickleback, fugu,
medaka, mandarin fish, rainbow trout, snakehead.

Additional file 2: Homologues of IRFs in non-vertebrate
deuterostomes. Table Il Sequence information of homologues of IRFs in
non-vertebrate deuterostomes including sea squirt, lancelet, sea urchin
and acorn worm.
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