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Abstract

Background: The RATE tool was recently developed to computationally infer the HLA restriction of given epitopes
from immune response data of HLA typed subjects without additional cumbersome experimentation.

Results: Here, RATE was validated using experimentally defined restriction data from a set of 191 tuberculosis-derived
epitopes and 63 healthy individuals with MTB infection from the Western Cape Region of South Africa. Using this
experimental dataset, the parameters utilized by the RATE tool to infer restriction were optimized, which included
relative frequency (RF) of the subjects responding to a given epitope and expressing a given allele as compared to
the general test population and the associated p-value in a Fisher’s exact test. We also examined the potential for
further optimization based on the predicted binding affinity of epitopes to potential restricting HLA alleles,
and the absolute number of individuals expressing a given allele and responding to the specific epitope.
Different statistical measures, including Matthew’s correlation coefficient, accuracy, sensitivity and specificity
were used to evaluate performance of RATE as a function of these criteria. Based on our results we recommend
selection of HLA restrictions with cutoffs of p-value < 0.01 and RF≥ 1.3. The usefulness of the tool was demonstrated
by inferring new HLA restrictions for epitope sets where restrictions could not be experimentally determined due to
lack of necessary cell lines and for an additional data set related to recognition of pollen derived epitopes from allergic
patients.

Conclusions: Experimental data sets were used to validate RATE tool and the parameters used by the RATE tool to
infer restriction were optimized. New HLA restrictions were identified using the optimized RATE tool.
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Background
Identification of HLA alleles restricting specific T cell
epitopes is an important component of accurate
characterization of T cell responses. This information
is required, for example, for the production of tetra-
mer staining reagents [1–3], or to evaluate association
of particular HLAs with protective or predisposing T
cell responses [4–6]. The restricting HLA alleles can
be determined by experiments relying on classical
immunological approaches, such as inhibition by HLA
locus specific antibodies, and use of matched/
mismatched or single HLA allele transfected cell lines
[7]. These experimental approaches can be time

consuming and resource intensive. As an alternative,
we developed a computational method called RATE
(Restrictor Analysis Tool for Epitopes) that infers
HLA restriction of epitopes from T cell response data
in HLA typed subjects [8]. “T cell response data” is
the specific immune response to various epitopes in
PBMCs from HLA typed individuals measured by, for
example, IFN-γ ELISPOT and reported as spot-
forming cells (SFCs) per million cells. RATE infers
HLA restrictions by considering the presence or
absence of a response to a given epitope as the bio-
logical outcome, and calculating the relative frequency
(RF) of the subjects responding to a given epitope
and expressing a given allele as compared to the
general test population and associated statistical
significance.* Correspondence: spaul@lji.org
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This method was initially validated with a small set of
experimental data, generated to verify a limited number
of inferred restrictions, and by retrospective analysis of
data sets publicly available online. We recently reported
the results of a clinical study for which HLA restrictions
were experimentally determined for 191 Mycobacterium
tuberculosis (MTB) peptides tested in a South African
cohort of 63 MTB infected individuals by the use of
single HLA transfectants [9]. This provided an oppor-
tunity for an unbiased validation of RATE, and also for
further optimization of its performance by systematically
examining the effect of varying different parameters
linked to the analysis and its output. The subsequently
updated version of the RATE tool server has also been
made available online (http://iedb-rate.liai.org/).

Materials and methods
Study subjects and peptides
The study involved MTB-specific T cell response data
from healthy adults with latent MTB infection from the
Worcester region of the Western Cape Province of
South Africa, as detailed in Arlehamn et al. (2016) [9].
The responses studied are resulting from natural ex-
posure to whole TB. MTB donors were recruited
based on IGRA (Interferon gamma release assay; FDA
approved for diagnosis of latent TB infection) reactivity
and lack of active TB symptoms. Donors with a positive
IGRA are latently infected with MTB. Peptides represen-
ting the vaccine candidate and IGRA antigens (Rv3874;
CFP10 and Rv3875; ESAT-6) (15-mers overlapping by 10
amino acids spanning each entire protein) and epi-
topes from the frequently recognized antigens previ-
ously reported by Arlehamn et al. [10], as well as
additional frequently recognized epitopes described in
ex vivo experiments and available in the IEDB
database (www.iedb.org) [11–15] were included in the
study as described previously [9].
Data on allergen-epitope T cell reactivity indepen-

dently and previously reported from a separate cohort of
Timothy grass (TG) allergic donors from the Denver,
CO and San Diego, CA regions was also investigated.
Donors had a skin prick test of > 3 mm to Timothy grass
or a TG-specific IgE titer of > 0.35 kU/L and a clinical
history of seasonal allergic symptoms consistent with
Timothy grass pollen allergy [16–19]. Immunodominant
peptides from Timothy grass pollen T cell antigens were
studied, as well as peptides from other grasses, including
Kentucky blue grass, Rye grass, Canary grass and
Orchard grass. These peptides were conserved in grass
pollen across species and elicited responses in two or
more pollen allergic patients [16–19]. Peptides were
synthesized as crude material on a small (1 mg) scale by
A and A (San Diego).

PBMC isolation, ELISPOT assays and HLA typing
Peripheral blood mononuclear cells (PBMC) were purified
from whole blood by layering onto Ficoll and density-
gradient centrifugation, according to the manufacturer’s
instructions.
Cells were cryopreserved in liquid nitrogen suspended

in FBS containing 10% (vol/vol) DMSO.
For ELISPOT assays, PBMC were stimulated at 2 × 105

cells/well in triplicate with peptide pools (5 μg/ml), pep-
tides (10 μg/ml), PHA (10 μg/ml) or medium containing
0.25% DMSO (percent DMSO in the pools, as a control)
in 96-well plates (Immobilion-P; Millipore) coated with
5 μg/ml anti-IFNγ (1-D1K; Mabtech). After 20 h incuba-
tion at 37 °C, wells were washed with PBS/0.05% Tween
20 and incubated with biotinylated anti-IFNγ (7-B6-1;
Mabtech) for 2 h. Spots were developed using Vectastain
APC peroxidase (Vector Laboratories) and 3-amino-9-
ethylcarbazole (Sigma-Aldrich). Spots were counted by
computer-assisted image analysis (KS-ELISPOT reader;
Zeiss). Responses were considered positive if the net
spot-forming cells (SFC) per 106 PBMC were ≥20, the
stimulation index ≥2, and p ≤0.05 (Student’s t-test, mean
of triplicate values of the response against relevant pools
or peptides vs. the DMSO control). All samples had a
viability >75%, as determined by trypan blue, and
reactivity to PHA >400 SFC/106 cells.
Four-digit HLA typing for these cohorts was done as

previously described [20]. Genomic DNA was isolated
from PBMC using standard techniques (REPLI-g; Qiagen).
Amplicons for HLA class I and class II genes were gene-
rated using PCR and locus-specific primers. Amplicons of
the correct size were purified using Zymo DNA Clean-up
Kit, according to the manufacturer’s instructions. Sequen-
cing libraries were prepared using Nextera XT reagents
(Illumina), according to manufacturer’s instructions. The
libraries were purified using AMPure XP (Beckman
Coulter) with a ratio of 0.5:1 beads to DNA (vol/vol). The
libraries were pooled in equimolar amounts and loaded at
5.4pM on one MiSeq flowcell with 1% phiX spiked in
(MiSeq Reagent Kit v3). Paired-end sequencing was
performed with 300 cycles in each direction. HLA typing
calls were made using HLATyphon (https://github.com/
LJI-Bioinformatics/HLATyphon).

HLA restriction using single HLA transfected cell lines
HLA restriction assays using single HLA transfected cell
lines were performed as described earlier [9]. Single
HLA transfected RM3 (derived from human B lympho-
cyte cell line Raji) or DAP.3 (L cell fibroblast) were
maintained in culture. In preparation for the assay, the
cell lines were harvested and viability (all >75%) was
determined using Trypan Blue. Each cell line at 2x105

cells/well was pulsed with 10 μg/ml individual peptide
for 1 h at 37 °C, followed by four washes in RPMI.
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PBMC at 2x105/well were stimulated in triplicate with
peptide pulsed cell line (5x104 cells/well), cell line alone
(as a control), peptides (10 μg/ml), PHA (10 μg/ml) or
medium containing 0.25% DMSO (percent DMSO in the
peptides, as a control) in 96-well plates (Immobilion-P;
Millipore) coated with anti-IFNγ antibody as described
above for single cytokine ELISPOT. Criteria for positive
responses were as described for ELISPOT assays above.

RATE calculations
The RATE tool (http://iedb-rate.liai.org/) [8] was used to
computationally infer the HLA restrictions from the
immune response and HLA typing data described above.
RATE estimates Relative Frequency (RF) to quantify the
strength of associations between expression of a specific
allele and detection of positive immune response. An
RF > 1 indicates a positive association between the two
properties in question (i.e., expressing the specific allele
increases the “odds” of having positive immune
response). RF is calculated according to the formula:

RF ¼ AþRþ= AþRþ þ AþR−ð Þ
AþRþ þ A−Rþð Þ=Total donors

Where
A+R+ =Number of subjects who expressed a specific

allele and gave a positive immune response to the
specific peptide
A-R- = Number of subjects who did not express the

specific allele and did not give a positive immune response
to the specific peptide
A-R+ =Number of subjects who did not express the

specific allele but gave a positive immune response to
the specific peptide
A+R- =Number of subjects who expressed the specific

allele but did not give a positive immune response to the
specific peptide
The Fisher’s exact test is used to estimate the statistical

significance of the association between HLA molecules
and epitope responses.

Statistical evaluation of RATE results
In order to evaluate the performance of the RATE tool,
the following statistical measures were estimated:

a) Matthew’s Correlation Coefficient

MCC ¼ ðTP � TNÞ−ðFP � FNÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞp

Where
TP = True positives
FP = False positives
FN = False negatives
TN = True negatives

b) Accuracy

Accuracy ¼ TP þ TN
Total

c) Sensitivity

Sensitivity ¼ TP
TP þ FN

d) Specificity

Specificity ¼ TN
FP þ TN

e) Precision

Precision ¼ TP
TP þ FP

f ) False positive rate

FPR ¼ FP
FP þ TN

Results
Assembly of an experimental data set for validation of
the RATE tool
The study involved two different sets of ELISPOT
data derived from MTB epitopes (Fig. 1). The first set
encompassed response data obtained when reactivity
of each of the 191 peptides was determined in a set
of 87 HLA typed donors for a total of 191 × 87 =
16,617 determinations (Additional file 1, tab “re-
sponse”). This data, along with the HLA types of the
87 donors (Additional file 1, tab “HLA”) was utilized
to infer restrictions by the RATE approach. The 87
donors expressed 111 unique HLA alleles and thus
the RATE generated reports for 191 × 111 = 21,201
peptide/allele combinations (Additional file 2). The
second data set entailed the experimental determi-
nation of HLA restriction of the same 191 peptides in
63 donors by the use of HLA transfected cell lines
(7). Obviously, only peptides giving a positive
response in a particular donor could be assessed for
HLA restriction. Besides, not all possible combina-
tions could be tested because HLA transfected cell
lines were not available for some less frequent allelic
variants. The HLA restriction was thus assayed for a
total of 3,195 peptide/allele/donor combinations.
Details on number of peptides, subjects and alleles
are given in Table 1. To generate a robust data set
for validating and optimizing RATE performance, only
peptide/allele restrictions that were independently
verified by positive experimental results in at least
three experiments in different subjects were included
as positive in the analysis. Likewise peptide/allele
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combinations consistently testing negative in multiple
subjects were considered negative (non-restricting).
The remaining peptide/allele combinations were con-
sidered as ambiguous and excluded from the valid-
ation analysis. This final data set contained 102
unique peptide/allele combinations (Additional file 3).

Experimental validation of the RATE tool
We next utilized this unbiased experimental data set to
validate RATE. The RATE tool utilizes immune response
data (in this case ELISPOT assay results) and HLA types
of the subjects in which the various epitopes were tested
to generate a list of parameters evaluating all possible
HLA restrictions in terms of combinations of peptides

and HLA alleles expressed by responding study subjects.
These parameters include (1) Relative Frequency (RF)
which is ratio of the response in subjects expressing the
specific allele to the response in all donors (see
Methods) (2) p-value indicating the statistical signifi-
cance of RF in Fisher’s exact test and (3) A+R+, defined
as the number of subjects expressing the specific allele
and having a positive response against a specific peptide.
The validation of RATE’s HLA restriction inference was

done by comparing the RATE results generated from the
MTB response data (Additional file 2) with the experi-
mentally identified HLA restrictions (Additional file 3).
The number of True Positives (TP), False Positives (FP),
False Negatives (FN) and True Negatives (TN) were used

Fig. 1 Illustrative description of the two sets of ELISPOT data derived from MTB epitopes and how they were used. The left panel shows the response
data obtained when reactivity of each of the 191 peptides was determined in a set of 87 HLA typed donors and was used to infer restrictions by the
RATE approach. The right panel shows the HLA restriction of the same 191 peptides in 63 donors determined experimentally using HLA transfected
cell lines. This data was then screened and used for validation of RATE by comparing with RATE results from the first data set

Table 1 Data sets used in the study. The table shows the number of peptides, subjects and alleles in each data set used in the
study. The first set (column 1) encompassed response data, when reactivity of each of the 191 peptides was determined in a set of
87 HLA typed donors and was used to infer restrictions by the RATE approach. The second data set (column 2) entailed the
experimental determination of HLA restriction of the same 191 peptides in 63 donors by the use of HLA transfected cell lines and
was used in validation of RATE. The third data set (column 3) came from data on allergen-epitope T cell reactivity from a cohort of
Timothy grass allergic donors

ELISPOT data (for determining
HLA restriction using RATE) (MTB)a

ELISPOT data (experimentally
determined HLA restrictions)(MTB)b

Validation data
(TG)

No. of peptides 191 191 66

No. of subjects/donors 87 63 137

No. of unique alleles 111 89 99

No. of allele-peptide combinations 21,201 16,999 6,534
aAdditional file 1 shows the input data for RATE that was used for determining HLA restriction using RATE approach. Additional file 2 shows the complete results
of this RATE analysis for all 21,201 peptide/allele combinations
bBased on availability of HLA transfected cell lines, restrictions were experimentally determined for 3,195 HLA/peptide/donor combinations. After screening of the
data as mentioned in results, 102 entries were selected for validation. This data is shown in Additional file 3
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to determine Matthew’s correlation coefficient (MCC), ac-
curacy, sensitivity, specificity, precision, and false positive
rate, as described in the Methods section. Since the data
sets for validation are associated with binary outcomes
(yes/no in terms of restriction and yes/no in terms of
RATE predictions), MCC is more appropriate here than
AUC values that are commonly used for statistical
evaluation of predictive performance.
MCC can range from -1 to 1. -1 indicates perfect

negative correlation, 0 random distributions and 1 perfect
correlation. In general, MCC values of +0.70 or higher in-
dicate a very strong positive relationship, +0.40 to +0.69 a
strong positive relationship, +0.30 to +0.39 a moderate
positive relationship, and values of +0.20 to +0.29 a weak
positive relationship. Initially when all peptide/allele com-
binations with statistically significant RF (Fisher’s exact
test p-value < 0.05) were selected as positive restrictions
from RATE results, the Matthew’s correlation coefficient
(MCC) was found to be 0.395 and had an accuracy of
0.706. The sensitivity, specificity and precision were 0.675,
0.726 and 0.614 respectively (Table 2). The False positive
rate was 0.274. This indicated a moderately positive rela-
tionship between the allele restrictions provided by RATE
tool and that identified experimentally.

Optimization of RATE output as a function of p-value,
RF and A+R+

We next used the experimental data set to identify the
optimal cutoff values for p-value, RF and A+R+ parame-
ters. As a first approach, the results were examined with
cutoff for p-value varying between 0.05, 0.01 and 0.005
with no cutoffs being applied for other variables. The
best MCC was obtained at p <0.01 (MCC = 0.451)
(Table 2) and more stringent cutoffs were associated
with lower overall performance and MCC values. The
accuracy, specificity, and precision were 0.745, 0.871 and
0.733, respectively, while sensitivity, as a result of
considering fewer potential restrictions as significant,
was 0.550. The false positive rate stood at 0.129.
The RATE results were next examined for the effect of

varying RF values. Since only RF ≥ 1.0 are associated
with positive associations, it is reasonable to assume that
a cutoff of RF ≥ 1.0 would be associated with higher per-
formance. Selection of an overly high RF cutoff would,
however, lead to significant reductions in TP-values and
MCC. When the cutoff value for RF was varied between

1.0 and 2.5 with no other cutoffs being applied for other
parameters, the best MCC was obtained at RF ≥ 1.3
(MCC = 0.314) (Table 3). For this cutoff, the accuracy,
sensitivity, specificity, precision and false positive rate
were 0.618, 0.825, 0.484, 0.508 and 0.516 respectively.
We then examined the RATE performance as a function

of A+R+ values ranging from 1 to 10 with no cutoffs being
applied to other parameters. The MCC was found to be
best at A+R+ ≥ 5. The MCC was 0.509 and the accuracy,
sensitivity, specificity, precision and false positive rate
were 0.725, 0.900, 0.613, 0.600 and 0.387 respectively
(Additional file 4). This result suggests that focusing on
HLA/peptide combinations with larger number of positive
results inherently increases performance. However it
should be noted that this parameter threshold has less
practical utility, since the optimal performance will be dif-
ferent in data sets of different sizes (studies with different
number of subjects being tested).
We next examined if different combinations of cutoffs

for different parameters would improve the performance.
The effect of different p-value cutoffs in combination with
RF cutoffs was examined as an “OR” condition; namely
considering restrictions positive if either a certain p-value
or a certain RF value is met. The best MCC obtained was
0.314, when cutoffs RF ≥ 1.3 or p-value cutoffs 0.05, 0.01
and 0.005 were applied. Next, we considered combined
cutoffs using an “AND” condition. When MCC was esti-
mated with combination of p-value cutoffs 0.05, 0.01 and
0.005 with RF in the range of 1.0 to 2.0, it was found that
the MCC of the combined cutoffs remained highest for p
<0.01 in combination with RF values in the range of 1.2 to
1.75, with an MCC of 0.451. While this is not an improve-
ment over the use of the p-value <0.01 by itself, we chose
the combined cutoff of p <0.01 and RF ≥1.3 in order to
have a more conservative and robust threshold. The cutoff
for RF was chosen as ≥ 1.3 since this gave the best MCC
when RF cutoffs were analyzed independently.

Combination of RATE with HLA binding predictions does
not yield further performance gains
We hypothesized that combining RATE outputs with
HLA binding predictions, would improve the overall
performance of RATE. To test this hypothesis, the effect
of predicted HLA binding was investigated with the
binding cutoff varied between IEDB consensus percentile
ranks 5.0 and 25.0 without applying any other cutoffs

Table 2 Effect of different cutoff values for p-value on RATE results. A cutoff of p <0.01 gave the best results with MCC = 0.451

Cutoffs TP FP FN TN Total Accuracy Sensitivity Specificity Precision False Positive Rate Matthews Correlation
Coefficient

p <0.05 27 17 13 45 102 0.706 0.675 0.726 0.614 0.274 0.395

p <0.01 22 8 18 54 102 0.745 0.550 0.871 0.733 0.129 0.451

p <0.005 18 5 22 57 102 0.735 0.450 0.919 0.783 0.081 0.432

The Author(s) BMC Immunology 2017, 18(Suppl 1):20 Page 5 of 65



(Additional file 5) and with cutoffs p <0.01 and RF ≥
1.3. The MHC binding affinity for each peptide/allele
combinations were predicted using IEDB MHC bin-
ding prediction tool (Kim et al., 2012). The lower
numerical value of IEDB consensus percentile rank
indicates stronger binding. Surprisingly, the incorpo-
ration of a predicted binding cutoff did not improve
performance. The best MCC value was obtained for a
consensus percentile rank of 15.0 when binding cut-
offs were used without applying any other cutoffs and
corresponded to an MCC value of 0.378 (Additional
file 5). When predicted binding cutoffs were com-
bined with cutoffs p <0.01 and RF ≥ 1.3, the MCC was
actually lower, as compared to the MCC of 0.451
observed with p <0.01 and RF ≥ 1.3 alone (data not
shown). Thus based on the analysis described so far,
the p <0.01 and RF ≥ 1.3 cutoff values were selected
for general use when applying RATE for inference of
HLA restrictions.

Identification of promiscuous recognitions
In certain cases, the same epitope can be restricted
by multiple alleles. These cases are denominated as
promiscuous restrictions [16, 21], as opposed to the
instances where a single HLA restricts the response
(“monogamous restriction”). Promiscuous restrictions
can be identified for an epitope by compiling multiple
independent single allele determinations. Alternatively
we had previously described an option for inferring
promiscuous restrictions as part of RATE tool [8]
using a combinatorial approach where the combined
RF values are calculated for any combinations of
alleles associated with positive RF values. However,
when we examined this issue, we found that incorpo-
ration of combined combinatorial HLA restriction
calculations as described in the earlier study [8] did
not improve RATE performance (data not shown).

In the MTB data set, promiscuous restrictions were
positively identified in 3 donors or more for six
peptides, listed in Table 4. Because of this small num-
ber, the performance of the promiscuous option could
not be fully evaluated in the present study. However,
we examined whether these multiple restrictions
could be identified by RATE as multiple independent
associations for a given peptide. Indeed, we found
that in approximately 50% of the cases the multiple
restrictions were also independently inferred by RATE
(those restrictions are in bold in Table 4). While this
can be of help if promiscuous restrictions are of
particular importance, we consider it more robust to
go with the “monogamous restriction” calculations.

Use of RATE to identify new restrictions and validation on
a new data set
While experimental determinations of HLA restriction
based on HLA matched APCs or single cell transfectants
are by definition limited to those HLA molecules for which
such reagents are available, the RATE method is not bound

Table 3 Effect of different cutoff values for RF on RATE results. A cutoff of RF≥ 1.3 gave the best results with MCC = 0.314

Cutoffs TP FP FN TN Total Accuracy Sensitivity Specificity Precision False Positive Rate Matthews Correlation
Coefficient

RF ≥ 1.00 34 44 6 18 102 0.510 0.850 0.290 0.436 0.710 0.162

RF ≥ 1.20 33 36 7 26 102 0.578 0.825 0.419 0.478 0.581 0.255

RF ≥ 1.25 33 35 7 27 102 0.588 0.825 0.435 0.485 0.565 0.270

RF ≥ 1.30 33 32 7 30 102 0.618 0.825 0.484 0.508 0.516 0.314

RF ≥ 1.35 31 31 9 31 102 0.608 0.775 0.500 0.500 0.500 0.275

RF ≥ 1.40 31 30 9 32 102 0.618 0.775 0.516 0.508 0.484 0.290

RF ≥ 1.45 30 29 10 33 102 0.618 0.750 0.532 0.508 0.468 0.279

RF ≥ 1.50 29 27 11 35 102 0.627 0.725 0.565 0.518 0.435 0.284

RF ≥ 1.75 26 24 14 38 102 0.627 0.650 0.613 0.520 0.387 0.257

RF ≥ 2.00 21 22 19 40 102 0.598 0.525 0.645 0.488 0.355 0.168

RF ≥ 2.50 16 15 24 47 102 0.618 0.400 0.758 0.516 0.242 0.168

Table 4 Promiscuous restrictions in the MTB data set identified
experimentally

Epitope Promiscuous alleles

VDLAKSLRIAAKIYS DQB1*06:02, DRB1*11:01, DRB3*02:02,
DRB3*03:01

MSQIMYNYPAMLGHA DQB1*06:02, DRB1*15:01

QAAVVRFQEAANKQK DQB1*06:02, DRB3*02:02, DRB5*01:01

EISTNIRQAGVQYSR DPB1*01:01, DPB1*04:01, DQB1*03:02,
DQB1*06:02, DRB1*04:01, DRB1*04:04,
DRB3*02:02, DRB4*01:01

MHVSFVMAYPEMLAA DQB1*06:02, DRB5*01:01

ISTNIRQAGVQYSRA DPB1*01:01, DQB1*03:02, DQB1*06:02,
DRB1*04:01, DRB1*04:04, DRB3*02:02,
DRB4*01:01, DRB5*01:01

The restrictions that were also inferred by the RATE tool are bolded
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by this limitation. To illustrate this point we generated an
output from RATE to highlight new HLA allele restrictions
inferred from the MTB data described above, for which
cell lines were not available to enable experimental

determination. In total, 40 new restrictions were identified,
demonstrating how the number and breadth of potential
restrictions can be expanded by the use of RATE. The
newly identified HLA restrictions are given in Table 5.

Table 5 New restrictions identified from MTB data for which cell lines were not available

Epitope Allele A+R+ Relative frequency p-value

AAFSRMLSLFFRQHI DPB1*03:01 2 13.667 0.005

AAVLRFQEAANKQKQ DRB1*15:03 3 10.600 0.000

AAVVRFQEAANKQKQ DRB1*15:03 6 3.600 0.001

AEKFKEDVINDFVSS DQB1*03:03 2 13.500 0.005

AGWLAFFRDLVARGL DRB4*01:03 5 2.692 0.010

AHGETVSAVAELIGD DRB1*15:01 4 6.480 0.001

AHGETVSAVAELIGD DRB5*01:01 4 3.600 0.008

ALSRVQSMFLGTGGS DRB1*15:03 3 11.857 0.000

AQAAVVRFQEAANKQ DRB1*15:03 7 4.375 0.000

ARTISEAGQAMASTE DQB1*03:19 5 5.303 0.000

ATSLDTMTQMNQAFR DQB1*06:01 2 27.000 0.001

ATSLDTMTQMNQAFR DRB1*15:02 2 27.000 0.001

AYGSFVRTVSLPVGA DQB1*02:02 5 3.661 0.003

AYGSFVRTVSLPVGA DRB4*01:03 7 2.870 0.001

DLVRAYHSMSSTHEA DPB1*04:02 3 5.640 0.006

HEANTMAMMARDTAE DPB1*13:01 4 3.733 0.007

ILPIAEMSVVAMEFG DQB1*03:03 3 10.125 0.001

ILPIAEMSVVAMEFG DRB1*04:07 2 10.125 0.009

IQGNVTSIHSLLDEG DRB4*01:03 7 2.344 0.007

LENDNQLLYNYPGAL DRB1*15:02 3 6.231 0.003

LRIAAKIYSEADEAW DQB1*03:19 6 2.893 0.003

MHVSFVMAYPEMLAA DRB1*15:03 4 5.929 0.001

MLGHAGDMAGYAGTL DPB1*13:01 2 9.333 0.010

MSQIMYNYPAMLGHA DQB1*06:01 3 4.667 0.008

MSQIMYNYPAMMAHA DQB1*06:01 4 3.682 0.004

MSQIMYNYPAMMAHA DRB1*15:02 4 3.682 0.004

MTSRFMTDPHAMRDM DQB1*06:01 2 13.500 0.004

MTSRFMTDPHAMRDM DRB1*15:02 2 13.500 0.004

MVAAASPYVAWMSVT DRB1*15:02 2 17.667 0.002

MVAAASPYVAWMSVT DQB1*06:01 2 11.778 0.006

QAAVVRFQEAANKQK DRB1*15:03 9 3.500 0.000

RQSGATIADVLAEKE DRB5*01:01 5 3.214 0.005

RRMWASAQNISGAGW DQB1*06:01 2 27.000 0.001

RRMWASAQNISGAGW DRB1*15:02 2 27.000 0.001

VAAAQMWDSVASDLF DQB1*06:01 2 11.778 0.006

VEDEARRMWASAQNI DQB1*06:01 2 27.000 0.001

VEDEARRMWASAQNI DRB1*15:02 2 27.000 0.001

VRFQEAANKQKQELD DRB1*15:03 6 5.156 0.000

YNYPAMLGHAGDMAG DRB1*15:02 2 9.333 0.010

YQAWQAQWNQAMEDL DQB1*03:19 2 18.667 0.002
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To further illustrate this point we also analyzed data
from a study on human T cell reactivity to Timothy
grass [17–19], where a set of 66 peptides was tested for
reactivity in 137 allergic donors who expressed 99
unique alleles. In all, this represented a total of 6,534
possible peptide/HLA combinations. When focusing on
HLA/peptide combination for which at least one donor
was positive, the number of potential restrictions is
reduced to 3,291. By applying the p <0.01 and RF ≥ 1.3
cutoff values, which was found to be optimal according
to the analysis described above, we could further reduce
the combinations to five restrictions, attributed to 3
unique peptides, (Tables 6 and 7), further exemplifying
the usefulness of the method.

Discussion
Here, we have utilized experimental data generated
from an independent epitope identification study to
validate and further optimize the performance of the
RATE tool [8], developed earlier to infer HLA restric-
tions based on HLA typing and immune response data
in human populations. Specifically, the present study
takes advantage of a recently described data set, where
HLA restrictions were experimentally determined for
a set of 191 different MTB derived peptides tested in
63 MTB infected South African donors. We found
that, on this data set, RATE was associated with a per-
formance of MCC = 0.451 when optimal cutoff values
for the output parameters were applied. Furthermore,
the tool was associated with an accuracy of 0.745 and
sensitivity of 0.550. In a practical sense, this perform-
ance indicates that the tool would allow a user to
greatly reduce the number of potential restrictions to
be examined, while still identifying about half of the
true restrictions without any experimental work. The
reason for the relatively low sensitivity is likely due to
the fact that several restrictions occur infrequently
and are thus not detected by an association based ap-
proach. In this respect, the fundamental utility of
RATE from the viewpoint of an experimental user is
that it identifies the most frequently occurring restric-
tions, thereby facilitating more efficient use of pre-
cious laboratory reagents and donor samples for
subsequent analyses.

In utilizing the experimental data set to optimize tool
performance, first consideration was given to the reliabi-
lity of determinations as judged by the associated p-value
in a Fisher’s exact test. Perhaps not surprisingly, we found
optimal tool performance by considering only restrictions
associated with a p-value <0.01. Interestingly, the perform-
ance of the tool is decreased by imposing significance
levels less than 0.01. This has particular significance in
terms of the potential use of Bonferroni correction, which
we considered in the RATE tool output. The results
clearly indicated that a Bonferroni correction should not
be used, as it would not improve the tool performance,
but rather essentially result in no useful inferences.
Imposing an additional requirement for an A+R+

threshold which result in selection of more reliable
inferences, namely those HLA/epitope combinations
based on epitopes recognized by multiple donors ex-
pressing a specific allele improved the performance
compared to p-value cutoff alone. For this particular
data set the MCC improved to 0.497 when A+R+ ≥ 5
cutoff was applied along with p <0.05. However, we
do not recommend using this as a general threshold,
because the optimal A+R+ threshold is expected to be
strongly dependent on the absolute number of donors
associated with a particular data-set. This type of
filter could nevertheless be considered and adjusted
to fit the experimental context, such as when a rela-
tively large number of inferred restrictions can be
feasibly tested, or whether it is desired to test only
few higher probability candidates.
Following a different approach, we saw that increasing

the magnitude of the associations, as measured by RF
values improve RATE performance. In the present analysis
we empirically determined and applied an optimal
performance for RF value of 1.3. The RF threshold can be
easily adjusted if more or less stringency is desired. We
further emphasize how adjusting the RF value is indirectly
correlated with p and A+R+ values. For this reason, in
most cases adjusting the p-value threshold will also impli-
citly select for higher RF or A+R+ values as well.
In terms of further refinements, surprisingly we found

that incorporating the predicted HLA binding in the
restriction scheme was optimal when used in isolation
for an IEDB consensus percentile rank of 15.0 but did

Table 6 Details of HLA restrictions from Timothy grass data set

Total number of peptides 66

Total donors tested 137

Total number of unique alleles expressed 99

Total HLA/peptide combinations 6,534

Total HLA/peptide combinations that gave positive
response in at least one donor

3,291

Potential restrictions with p <0.05 and RF ≥ 1.25 5

Table 7 Newly identified restrictions from Timothy grass
data set

Epitope Allele A+R+ RF p-value

AVMLTFDNAGMWNVR DPB1*01:01 5 3.063 0.006

ELRKTYNLLDAVSRH DRB1*15:01 7 2.227 0.007

DRB5*01:01 11 2.139 0.000

GEVLNALAYDVPIPG DRB1*04:01 5 2.912 0.007

DRB4*01:03 5 2.912 0.007
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not improve the performance in a broad range of per-
centile ranks (5.0 to 25.0) when used in combination
with other optimized parameters. Several different
factors might contribute to this result. First, it is well
established that HLA binding is a necessary but not
sufficient requirement for T cell recognition; in the case
of HLA restrictions, all peptides studied are by definition
binders to some of the alleles, and the well-known
promiscuity observed in the case of HLA class II binding
[22] might hinder realizing any increase in RATE
performance based on HLA binding predictions. Second,
it is possible that the result reflects that HLA class II
binding predictions for certain alleles may be relatively
inaccurate. This concern will be addressed in future by
progressive retraining of HLA class II prediction tools,
as more HLA binding data becomes available, and
increased accuracy can be achieved.
We also found that the iterative combination of different

allele subsets described in the previous study [8] did not
improve RATE performance. However, in the MTB data
set that was used to optimize the performance only 6 out of
the total 191 peptides had promiscuous restrictions and for
this reason this data set was not ideal to address the best
strategy to identify promiscuous restrictions. Future studies
utilizing a larger number of experimentally determined
promiscuous restrictions will be required to fully evaluate
this issue. At the same time it should be considered that
loss of significance due to multiple comparisons is a serious
problem for the promiscuous option. To truly demonstrate
promiscuous restrictions might require larger data sets than
the one utilized here (which is representative of most
epitope identification studies). Based upon these conside-
rations it is recommended that the “monogamous restriction”
calculation be used for practical purposes (monogamous
refers to HLA-peptide relationship where a peptide is
found to be restricted by a single allele). To demonstrate
or identify potential promiscuous restrictions it seems
safer to record different HLA restrictions independently
identified for a given epitope.
Finally the RATE tool was applied to infer additional

restrictions both in the original data set, and in a data
set including epitopes derived from pollen allergens. In
the present study, we adjusted the RATE parameters
according to a known MTB data set. In future studies it
will be interesting to assess the performance of RATE
on unknown samples to exclude overfitting of the
parameters to the MTB data. However, these experi-
ments are laborious and expensive and therefore beyond
the scope of the current study.
The results highlight how the RATE approach is

suited for inference of restrictions for which no trans-
fected cell lines are available. We emphasize that
these instances most often correspond to alleles that
are rare in the general population, but relatively

frequent in a specific study population, ethnicity or
geographical location. In this respect, it is notable
that several of the new restrictions inferred by the
RATE tool in the MTB data set were mediated by the
HLA DRB1*15:03 allele, which is present at 0.0517
frequency in the Western Cape region study popula-
tion, 0.0596 frequency in South Africa, but only at
0.0225 worldwide (http://www.allelefrequencies.net
[23]). These results emphasize the value of the RATE
tool in terms of providing HLA restriction data in the
context of diverse HLAs and complex multi-ethnic
human trials.
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