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Abstract 

Purpose This study was designed to investigate the efficacy and safety of immune checkpoint inhibitors (ICIs)-based 
therapy in proficient mismatch repair (pMMR)/non-microsatellite instability-high (non-MSI-H) metastatic colorectal 
cancer (mCRC).

Methods Electronic databases were screened to identify relevant trials. The primary endpoints were pooled objec-
tive response rate (ORR) and disease control rate (DCR). Stratified analysis was accomplished on ICIs-based regimens, 
treatment lines and RAS status.

Results Totally, 1723 mCRC patients from 39 cohorts were included. The pooled ORR, DCR, 12-month overall survival 
(OS) rate and 6-month progression-free survival (PFS) rate of ICIs-based therapy in pMMR/non-MSI-H mCRC were 
8.5% (95% CI: 4.4%-13.5%), 48.2% (95% CI: 37.8%-58.6%), 52.3% (95% CI: 46.4%-58.1%) and 32.8% (95% CI: 23.5%-
42.7%) respectively. As a whole, no significantly differences were shown between ICIs-based and non-ICIs-based 
therapy for pMMR/non-MSI-H mCRC in terms of both PFS (HR = 1.0, 95% CI: 0.9–1.1, P = 0.91) and OS (HR = 1.0, 95% 
CI: 0.9–1.2, P = 0.51). It was worth noting that the addition of ICIs to anti-vascular endothelial growth factor (VEGF) 
agent plus chemotherapy displayed excellent efficacy in pMMR/non-MSI-H mCRC (ORR = 42.4%, 95% CI: 10.0%-78.6%; 
DCR = 92.0%, 95% CI: 68.3%-100.0%; 12-month OS rate = 71.4%, 95% CI: 50.0%-89.1%; 6-month PFS rate = 55.2%, 95% 
CI: 24.8%-83.8%; and PFS (compared with non-ICIs-based therapy): HR = 0.9, 95% CI: 0.8–1.0, P = 0.02), especially served 
as first-line therapy (ORR = 74.2%, 95% CI: 61.4%-85.4%; DCR = 98.7%, 95% CI: 92.0%-100.0%); and without additional 
treatment related adverse events (TRAEs) were observed.

Conclusions ICIs-based combination therapy, especially the addition of ICIs to first-line anti-VEGF agent plus chemo-
therapy, is promising in pMMR/non-MSI-H mCRC with good efficacy and controllable toxicity.
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Introduction
Metastatic colorectal cancer (mCRC) is one of the major 
causes of cancer-related morbidity and mortality all 
over the world [1]. Despite remarkable improvements 
have been made in clinical outcomes with the optimiza-
tion of chemotherapy and targeted therapy, the results 
continue to fall far short of durable curative treatment 
of mCRC patients. Consequently, it is crucial to seek a 
novel approach against mCRC. During the last decade, 
immune checkpoint inhibitors (ICIs) have made tre-
mendous breakthroughs in the clinical treatment of sev-
eral hematological and solid tumors, including Hodgkin 
lymphoma, malignant melanoma, non-small cell lung 
cancer (NSCLC), triple negative breast cancer (TNBC), 
advanced hepatocellular carcinoma (HCC) and micros-
atellite instability-high (MSI-H) mCRC [2–7]. However, 
ICIs remain largely ineffective in the majority of mCRC 
patients, characterized by proficient mismatch repair 
(pMMR)/non-MSI-H.

It has been recorded that a lack of efficacy of the anti-
PD-1 and a modest clinical benefit of the anti-PD-L1 
plus the anti-CTLA-4, reserved only to patients with 
a tumor mutational burden (TMB) more than 28 mut/
Mb on circulating tumor DNA [8, 9]. Based on these 
considerations, accumulating focus has been recently 
placed on developing effective combination regimens in 
which ICIs have been incorporated with chemotherapy, 
radiotherapy and biologic agents with the purpose of 
reshaping the microenvironment of pMMR/non-MSI-
H tumors towards an immune-inflamed/hot phenotype, 
that may lead to ICIs sensitivity. However, much of these 
approaches have been largely disappointing [10–12]. 
Notably enough, two phase II studies named AtezoTRIBE 
and MAYA, assessing combinations of ICIs with chem-
otherapy, have rekindled hope for the use of ICIs in 
pMMR/non-MSI-H mCRC [13, 14].

To overcome the limitations of individual studies and 
assess the overall benefit, therefore, we conducted a 
comprehensive survey based on a large sample size (39 
cohorts incorporating 1723 individuals), diverse dimen-
sions (including pooled rate, odd ratio (OR), and hazard 
ratio (HR)), multiple stratifications (based on ICIs-based 
regimens, treatment lines and RAS status), and various 
evaluation indicators (incorporating objective response 
rate (ORR), disease control rate (DCR), progression-free 
survival (PFS) and overall  survival (OS)) to evaluate the 
efficacy and safety of ICIs-based therapy in pMMR/non-
MSI-H mCRC.

Materials and methods
Data sources and literature searches
Articles were screened through a systematic electronic 
literature retrieval for abstracts of relevant studies in the 

published literature. PubMed, Cochrane Library, and 
EMBASE were searched and the data were updated as of 
August 15th, 2022. The basic search terms were used as 
follows: “immunotherapy”, “immune checkpoint inhibi-
tor”, “Pembrolizumab”, “Atezolizumab”, “Nivolumab”, “PD-
1”, “Keytruda”, “Tecentriq”, “Bavencio”, “Imfinzi”, “PD-L1”, 
“CTLA-4”, “Ipilimumab”, “programmed cell death 1”, “pro-
grammed cell death-ligand 1”, “cytotoxic T lymphocyte-
associated protein 4”, “ICI”, “Sintilimab”, “Camrelizumab”, 
“Tislelizumab”, “Durvalumab”, “Avelumab”, “colon cancer”, 
“colorectal cancer”, “rectal cancer”, “microsatellite instabil-
ity-low”, “MSI-L”, “MS-S”, “MSS”, “microsatellite stable”, and 
“pMMR”. Full-text papers were scrutinized if abstracts did 
not provide substantial information. Moreover, the refer-
ences of relevant articles were reviewed for additional 
studies. Data retrieval was accomplished in English.

Selection of studies
Initially, two investigators performed a screening of titles 
and abstracts respectively, then examined the full-text of 
articles to acquire eligible studies. For the duplicate stud-
ies based on the same study patients, only the latest or 
most comprehensive data were recruited.

Inclusion criteria
(1) Prospective or retrospective studies to evaluate the 
efficacy and safety of ICIs in pMMR/non-MSI-H mCRC; 
(2) patients pathologically confirmed as CRC; (3) the data 
(involving any of the following outcomes: ORR, DCR, PFS, 
OS, 6-month PFS rate and 12-month OS rate) to evaluate 
the efficacy of ICIs in pMMR/non-MSI-H mCRC could be 
obtained or calculated from the original literature.

Data extraction
Data extraction was implemented conforming to the 
PRISMA guidance (Table S1). All eligible studies involved 
information as follows: the first author’s name, publica-
tion year, number of pMMR/non-MSI-H mCRC patients, 
ICIs agent, and endpoints.

Quality assessment
The quality of included studies was assessed indepen-
dently by two reviewers using the Newcastle–Ottawa 
Scale (NOS) for case–control and cohort studies. It 
encompassed three dimensions of selection, comparabil-
ity, and exposure, with a full score of 9 points.

Statistical methods
The primary endpoints were ORR and DCR meas-
ured by pooled rates with corresponding 95% CIs for 
pMMR/non-MSI-H mCRC. The secondary endpoints 
were pooled PFS, OS, 6-month PFS rate and 12-month 
OS rate. Subgroup analysis was accomplished based on 
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various ICIs-based regimens, treatment lines and RAS 
status. The summary measures of prognostic param-
eters and adverse events (AEs) were pooled rate, ORs 
and HRs with 95% CIs. Funnel plots and Egger’s test 
were performed to evaluate publication bias. Statistical 
analysis was performed with R 4.0 statistical software. 
Survival data were obtained based on the Kaplan–
Meier curves. Heterogeneity was assessed by I-square 
tests and Chi-square. If P < 0.1 or I2 > 50%, remarkable 
heterogeneity existed. A random effect model was 
adopted to calculate the pooled data when heterogene-
ity existed, or else, a fixed effect model was employed.

Results
Selection of study
Initially, 421 relevant articles were scrutinized inten-
sively. Of them, 18 were filtered for duplication, and 330 

were excluded for digression after screening the titles and 
abstracts. Then the full text of 73 articles was thoroughly 
reviewed, and 38 were filtered for: they were not human 
research, and not in English, commentaries, case reports, 
review articles, or letters to the editor, and without 
enough data for calculation. Finally, a total of 35 articles 
(including 39 cohorts) incorporating 1723 patients were 
recruited in this study (Table S2). The elaborate proce-
dure was displayed in Fig. 1.

Study traits
Totally, 1723 individuals from the 35 articles (39 cohorts) 
published until August 15th, 2022 were recruited. The 
sample size ranged from 6 to 250. Of these studies, 4 
were randomized controlled trials (RCTs), and 9 retro-
spective studies. Meanwhile, all of these studies involved 
ICIs: ICIs monotherapy, ICIs plus targeted therapy, ICIs 

Fig. 1 Flowchart on selection including trials in the meta-analysis
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plus chemotherapy or radiotherapy, ICIs plus both tar-
geted therapy and chemotherapy/radiotherapy. Pooled 
rate and 95% CIs were used to report the ORR, DCR, 
6-month PFS rate, 12-month OS rate, and AEs of ICIs 
in pMMR/non-MSI-H mCRC; HRs with corresponding 
95% CIs were utilized to assess the PFS and OS of ICIs 
for pMMR/non-MSI-H mCRC. The principal traits were 
presented in Table 1.

Data analysis
The efficacy of ICIs‑based regimens for pMMR/non‑MSI‑H 
mCRC 

ORR A total of 38 cohorts containing 1277 patients 
were included to investigate the ORR of ICIs-based regi-
mens for pMMR/non-MSI-H mCRC. Overall, the pooled 
ORR was 8.5% (95% CI: 4.4%-13.5%) (Fig. 2a), with 74.2% 
(95% CI: 61.4%-85.4%) as first-line regimen and 6.4% 
(95% CI: 3.3%-10.4%) as second-line or beyond regimen 
(Table  2), and without publication bias by funnel plot 
(Fig. 2b) and Egger’s test (z = 0.9, P = 0.39).

Subgroup analysis was implemented based on vari-
ous ICIs-based regimens (Table  2). The pooled ORR of 
ICIs monotherapy was low (ORR = 2.7%, 95% CI: 0.0%-
9.4%), while that of ICIs plus anti-vascular endothelial 
growth factor (VEGF) agent and chemotherapy was high 
(ORR = 42.4%, 95% CI: 10.0%-78.6%), especially as first-
line therapy.

There was no statistical difference on ORR for ICIs-
based regimens in both RAS wild type (wt) and RAS 
mutant type (mt) pMMR/non-MSI-H mCRC (Fig. S1, 
OR = 1.4, 95% CI: 0.6–3.1, P = 0.46).

DCR A total of 31 cohorts involving 834 patients were 
included to report the DCR of ICIs-based regimens for 
pMMR/non-MSI-H mCRC. Generally, the pooled DCR 
was 48.2% (95% CI: 37.8%-58.6%) (Fig.  2c), with 98.7% 
(95% CI: 92.0%-100.0%) as first-line regimen and 45.1% 
(95% CI: 34.4%-56.0%) as second-line or beyond regimen 
(Table  2), and without publication bias by funnel plot 
(Fig. 2d) and Egger’s test (z = -1.2, P = 0.23).

Subgroup analysis was carried out based on various 
ICIs-based regimens (Table  2). Obviously, the pooled 
DCR of ICIs plus anti-VEGF agent and chemotherapy 
was the best (DCR = 92.0%, 95% CI: 68.3%-100.0%), espe-
cially when it served as first-line therapy.

There was also no significantly difference on DCR for 
ICIs-based regimens in both RASwt and RASmt pMMR/
non-MSI-H mCRC (Fig.  S1, OR = 0.9, 95% CI: 0.5–1.9, 
P = 0.81).

OS The pooled HR of OS for ICIs-based therapy versus 
non-ICIs-based therapy in pMMR/non-MSI-H mCRC 
was 1.0 (95% CI: 0.9–1.2, P = 0.51) (Fig. 3a) without publi-
cation bias through funnel plots (Fig. S2) and Egger’s test 
(z = 0.5, P = 0.60).

As a whole, the 12-month OS rate of ICIs-based ther-
apy was 52.3% (95% CI: 46.4%-58.1%) (Table 3). Accord-
ing to subgroup analysis, the regimen of ICIs plus 
anti-VEGF agent and chemotherapy showed the high-
est 12-month OS rate (71.4%, 95% CI: 50.0%-89.1%) 
(Table 3).

PFS The pooled HR of PFS for ICIs-based therapy 
versus non-ICIs-based therapy in pMMR/non-MSI-H 
mCRC was 1.0 (95% CI: 0.9–1.1, P = 0.91) (Fig. 3b) with-
out publication bias through funnel plots (Fig. S2) and 
Egger’s test (z = -0.5, P = 0.62).

Subgroup analysis was performed based on vari-
ous ICIs-based regimens. Compared with non-ICIs-
based therapy, the addition of ICIs to anti-VEGF agent 
plus chemotherapy brought significantly longer PFS for 
pMMR/non-MSI-H mCRC (HR = 0.9, 95% CI: 0.8–1.0, 
P = 0.02, Fig.  3c) without publication bias (funnel plots: 
Fig. S2, Egger’s test: z = 0.5, P = 0.60).

Subgroup analysis was also conducted based on RAS 
status. There was no significantly difference on PFS for 
ICIs-based regimens in both RASwt and RASmt pMMR/
non-MSI-H mCRC (HR = 1.0, 95% CI: 0.6–1.5, P = 0.89, 
Fig.  3d), without publication bias (funnel plots: Fig. S2, 
Egger’s test: z = 0.5, P = 0.60).

As a whole, the 6-month PFS rate of ICIs-based therapy 
was 32.8% (95% CI: 23.5%-42.7%) (Table 3). According to 
subgroup analysis, the regimen of ICIs plus anti-VEGF 
agent and chemotherapy showed the highest 6-month 
PFS rate (55.2%, 95% CI: 24.8%-83.8%) (Table 3).

The safety of ICIs‑based therapy in pMMR/non‑MSI‑H mCRC 
A total of 21 cohorts were included to calculate the 
safety of ICIs-based therapy in pMMR/non-MSI-H 
mCRC (Table  4), and the pooled rate of grade 3 or 
beyond AEs was 31.8% (95% CI: 20.1%-44.8%). Despite 
the regimen of ICIs plus anti-VEGF agent and chemo-
therapy revealed higher incidence of grade 3 or beyond 
AEs, no additional treatment related adverse events 
(TRAEs) were observed.

Assessment of study quality
The quality assessment of 35 recruited articles was sum-
marized in Table S3 with relatively satisfying results for 
bias risk assessment.
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Table 1 The principal characteristics of eligible articles

First author Year Clinicaltrials.
gov

Study phase MSI/MMR 
status

No. patients 
treated with 
ICIs

Treatment 
line

ICIs agent Dose Combination 
drug

Gou M [15] 2022 NA Retrospec-
tive, SA

non-MSI-H/
pMMR

45  ≥ 3 anti-PD-1 Pembro, 
Sin, Camre: 
200 mg; 
Nivo: 3 mg/
kg, q3w

Fruquintinib

Antoniotti C 
[13]

2022 NCT03721653 RCT, phase II pMMR 132 1 Atezo 840 mg, q2w FOLFOX-
IRI + Bevaci-
zumab

Xu YJ [16] 2022 NA Retrospec-
tive, SA

MSS/pMMR 30  ≥ 3 anti-PD-1 Tori: 240 mg 
q3w, Camre: 
200 mg q2 
or 3w, Nivo: 
240 mg q2w, 
Pembro, Sin, 
tislelizuma-
bor: 200 mg 
q3w

Rego

Morano F 
[14]

2022 NCT03832621 MC, SA, 
phase II

MSS 33  ≥ 2 IPI and Nivo IPI: 1 mg/kg 
q8w, Nivo: 
480 mg q4w

Temozolomide

Mettu NB 
[17]

2022 NCT02873195 RCT, phase II MSS/pMMR 69  ≥ 2 Atezo 840 mg, q2w Capecit-
abine + Bevaci-
zumab

Rahma OE 
[11]

2022 NCT02298959 MC, phase IB MSS 6  ≥ 2 Pembro 2 mg/kg, 
q2w

Ziv-aflibercept

Kim RD [18] 2022 NCT03712943 OL, SA, phase 
I/Ib

pMMR 51  ≥ 3 Nivo 240 mg Rego

Redman JM 
[19]

2022 NCT03050814 RCT, phase II MSS 16 1 Ave 10 mg/kg 
q2w

AdCEA Vac-
cine + mFOL-
FOX6 + Bevaci-
zumab

Fukuoka S 
[20]

2020 NCT03406871 OL, phase Ib MSS/pMMR 25  ≥ 3 Nivo 3 mg/kg, 
q2w

Rego

Eng C [10] 2019 NCT02788279 RCT, MC, OL, 
phase III

MSS/MSI-L 170 NA Atezo 840 mg, q2w Cobimetinib

83 NA Atezo 1200 mg, 
q3w

None

Kawazoe 
A [21]

2020 NCT02851004 MC, phase I/II MSS 40 NA Pembro 200 mg, q3w Napabucasin

Ren C [22] 2020 NCT03912857 Prospec-
tive, SA, OL, 
phase II

MSS 10 NA Camre 200 mg, q2w Apatinib

Kawazoe 
A [23]

2021 UMIN000032801 OL, phase Ib MSS 25  ≥ 2 Nivo 3 mg/kg, 
q2w

TAS-116 (Pim-
itespib)

Parikh AR 
[12]

2021 NCT03104439 SA, non-
randomized, 
phase II

MSS 27  ≥ 2 IPI and Nivo Nivo: 240 mg 
and IPI: 
1 mg/kg

Radiation

13  ≥ 2 None

Wang C [24] 2020 NA Retrospec-
tive

MSS 18  ≥ 3 anti-PD-1 Pembro: 
200 mg q3w, 
Nivo: 240 mg 
q2w

Rego

Cousin S [25] 2021 NCT03475953 SA, OL, 
Phase II

MSS 47  ≥ 2 Ave 10 mg/kg 
q2w

Rego

Wang C [26] 2020 NCT03005002 SA, Phase II MSS 9  ≥ 3 Treme + Durva Treme: 75 mg 
q4w + Durva: 
1500 mg 
q4w

Yttrium-90 
Liver Radioem-
bolization
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Table 1 (continued)

Li J [27] 2020 NA Retrospec-
tive

MSS/pMMR 23  ≥ 3 anti-PD-1 Nivo, Pem-
bro, Camre, 
Sin, Tori

Rego

Hellmann 
MD [28]

2019 NCT01988896 MC, OL, 
phase I/Ib

MSS/MSI-L 62  ≥ 1 Atezo 800 mg, q2w Cobimetinib

Kim DW [29] 2021 NCT03332498 Phase II pMMR 31  ≥ 2 Pembro 200 mg q3w Ibrutinib

Patel MR [30] 2021 NCT02860546 SA, phase II MSS 18  ≥ 3 Nivo 3 mg/kg, 
q2w

Trifluridine/
tipiracil

Bordonaro R 
[31]

2021 NCT02848443 OL, MC, 
phase I

MSS 17  ≥ 2 Nivo 3 mg/kg, 
q2w

Trifluridine/
tipiracil (FTD/
TPI) + oxalipl-
atin

Zhou H [32] 2021 NA Retrospec-
tive

MSS/pMMR 21 1 Camre 200 mg q3w XELOX + Beva-
cizumab 
or Rego

Yu W [33] 2021 NA Retrospec-
tive

MSS 33  ≥ 3 Tori 240 mg q3w Rego

Sun L [34] 2021 NA Retrospec-
tive

MSS 23  ≥ 4 anti-PD-1 Tori: 240 mg 
q3w, Nivo: 
200 mg q2w, 
Sin or Camre: 
200 mg q3w

Rego

28  ≥ 4 Fruquintinib

Jiang FE [35] 2021 NA Retrospec-
tive

MSS/pMMR 16  ≥ 3 Camre 200 mg q3w Rego 
or Fruquintinib

O’Neil BH 
[36]

2017 NCT02054806 MC, phase Ib MSS 19  ≥ 1 Pembro 10 mg/kg 
q2w

None

Yarchoan M 
[37]

2020 NCT02981524 SA, phase II pMMR 17  ≥ 3 Pembro NA GVAX colon 
vaccine

Taylor K [38] 2020 NCT02811497 MC, OL, 
phase II

MSS 15  ≥ 4 Durva 1500 mg 
q3w

CC-486

Martinelli E 
[39]

2021 NCT04561336 SA, phase II MSS 71  ≥ 3 Ave 10 mg/kg 
q2w

Cetuximab

Wang C [40] 2021 NA Retrospec-
tive

MSS 95  ≥ 3 anti-PD-1/
PD-L1

NA None

Lee JJ [41] 2017 NCT02260440 SA, phase II MSS 30  ≥ 3 Pembro 200 mg q3w Aza

Fang X [42] 2022 NCT05171660 OL, SA, 
phase II

MSS 25 1 Sin 200 mg q3w CapeOx 
and Bevaci-
zumab

Bocobo AG 
[43]

2021 NCT03396926 OL, SA, 
phase II

MSS 29  ≥ 2 Pembro 200 mg q3w Capecitabine 
and Bevaci-
zumab

Huyghe N 
[44]

2022 NCT03608046 Phase I MSS 10  ≥ 3 Ave 10 mg/kg 
q2w

Cetuximab 
and Irinotecan13  ≥ 3

First author Male median age 
(range)

Median fol-
low-up time 
(95%CI)

No. of control Control Endpoints median PFS 
(95% CI), 
(month)

median OS 
(95% CI), 
(month)

Gou M [15] 30 54 (29–85) NA 0 None ORR, DCR 3.8 (2.8–4.8) 14.9 (7.6–21.7)

Antoniotti C 
[13]

NA (18–75) 19.9 (IQR, 
17.3–23.9)

67 FOLFOX-
IRI + Bevaci-
zumab

PFS 12·9 (80% CI: 
11·9–13·3)

NA

Xu YJ [16] 14 57.5 (27–73) 12 0 None ORR, DCR 3.4 (2.2–4.6) NA

Morano F 
[14]

17 58 (IQR, 53–65) 23.1 (IQR, 
14.9–24.6)

0 None ORR, DCR 7 18.4

Mettu NB 
[17]

NA NA 20.9 41 Capecit-
abine + Beva-
cizumab

ORR, PFS 4.4 (4.1–6.4) NA

Rahma OE 
[11]

NA 64 (36–79) 8.2 0 None ORR, DCR 2.5 (0.6–3.3) 3.3 (0.6–3.4)

Kim RD [18] NA NA NA 0 None ORR, DCR 4.3 (2.3–7.9) 11.1 (9.7-NR)
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Table 1 (continued)

Redman JM 
[19]

11 NA NA 10 mFOL-
FOX6 + Beva-
cizumab

ORR, PFS, OS 10.1 
(3.6–16.1)

15.1 (5.4–NR)

Fukuoka S 
[20]

18 55 (31–77) NA 0 None ORR 7.9 (2.9-NR) NR (9.8-NR)

Eng C [10] NA NA 7.3 (IQR, 
3.7–13.6)

80 Rego ORR, PFS, OS NA NA

NA NA 80 Rego ORR, PFS, OS NA NA

Kawazoe 
A [21]

17 63 (25–79) 6.3 (1.1–15.4) 0 None ORR, DCR 1.6 (1.4–2.1) 7.3 (5.3–11.8)

Ren C [22] 3 54 (40–66) NA 0 None ORR, DCR 1.83 
(1.80–1.86)

7.8 (0–17.07)

Kawazoe 
A [23]

12 61 (32–77) NA 0 None ORR 3.2 (2.8–4.4) 13.5 (8.2–15.1)

Parikh AR 
[12]

22 59 (26–83) NA 0 None ORR, DCR 2.5 (2.3–2.8) 10.9 (6.7–15.0)

NA 0 None ORR, DCR NA NA

Wang C [24] 16 60 (43–79) NA 1 None ORR, DCR 2 NR

Cousin S [25] 35 62 (26–83) NA 0 None ORR, DCR 3.6 (1.8–5.4) 10.8 (5.9–NR)

Wang C [26] 5 54 NA 0 None ORR, DCR NA NA

Li J [27] 16 50 (33–73) 7.9 (6.5–9.3) 0 None ORR, DCR 3.1 (2.32–
3.89)

NA

Hellmann 
MD [28]

NA NA 4.2 (0.7–40.2) 0 None ORR NA NA

Kim DW [29] 16 59 (24–73) NA 0 None ORR, DCR 1.4 (1.4–1.5) 6.6 (4.3–12.2)

Patel MR [30] 9 56.5 (40–70) NA 0 None ORR, DCR 2.2 (1.8–6.0) 2.8 (1.8–5.1)

Bordonaro R 
[31]

5 64 (33–76) NA 0 None ORR, DCR 6 (2–8) NR (6.5-NR)

Zhou H [32] 11 62 (43–78) 11.5 
(10.3–12.7)

0 None ORR, DCR NA NA

Yu W [33] 15 53.6 (mean) NA 0 None ORR, DCR 3.8 NA

Sun L [34] 13 54.6 (mean) 6.2 (3.9–8.43) 0 None ORR, DCR NA NA

14 53.0 (mean) 0 None ORR, DCR NA NA

Jiang FE [35] 11 54 (31–72) NA 0 None ORR, DCR NA NA

O’Neil BH 
[36]

NA NA NA 0 None ORR, DCR NA NA

Yarchoan M 
[37]

6 58 (44–85) NA 0 None ORR, DCR 2.7 (1.6–3.2) 7.1 (6.0–14.7)

Taylor K [38] 9 56 (36–78) 4.7 0 None ORR, DCR NA NA

Martinelli E 
[39]

NA NA 19.5 
(12.8–22.8)

0 None ORR, DCR 3.6 (3.3–3.9) 11.6 (8.3–15.0)

Wang C [40] 54 55 (IQR, 49–64) NA 0 None ORR, DCR NA NA

Lee JJ [41] 17 61 (30–79) NA 0 None ORR, DCR 2.1 (1.8–2.8) 6.2 (3.5–8.7)

Fang X [42] 18 60 (45–75) NA 0 None ORR, DCR NA NA

Bocobo AG 
[43]

14 55 (36–77) NA 0 None ORR, DCR NA NA

Huyghe N 
[44]

NA NA NA 0 None ORR, DCR NA NA

NA 0 None ORR, DCR NA NA

The details of included studies can be found in the Table S2

Abbreviations: ICIs immune checkpoint inhibitors, No number, NR not reach, NA not available, PFS progression-free survival, OS overall survival, CI confidence interval, 
RCT  randomized controlled trial, MC multicenter, OL open-label, SA single-arm, DB double-blin, Pembro Pembrolizumab, Atezo Atezolizumab, Nivo Nivolumab, Durva 
Durvalumab, Ave Avelumab, Camre Camrelizumab, Treme Tremelimumab, PD-1 programmed cell death-1, PD-L1 Programmed cell death-Ligand 1, NE not evaluable, 
ORR objective response rate, DCR disease control rate, mo months, Rego regorafenib, Sin sintilimab, Tori toripalimab, Aza azacitidine, pMMR proficient mismatch repair, 
MSI-H microsatellite instability-high, MSS microsatelite stable, MSI-L microsatellite instability-low
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Discussion
In the last decade, ICIs has initiated a new era for immu-
notherapy in oncology by monoclonal antibodies to release 
the anti-tumor activity of preexisting tumor-specific T-cell 
immunity, which inspired researchers to focus on the 
application of ICIs in mCRC. However, a lot of studies 

have confirmed that ICIs monotherapy has not shown 
significant clinical activity in pMMR/non-MSI-H mCRC, 
which was considered with an immune-desert or immune-
excluded (or “cold”) microenvironment. Therefore, accu-
mulating studies have been carried out recently focusing 
on ICIs-based combination regimens in which ICIs have 

Fig. 2 The pooled objective response rate (ORR) of immune checkpoint inhibitors (ICIs) in proficient mismatch repair (pMMR)/non-microsatellite 
instability-high (non-MSI-H) metastatic colorectal cancer (mCRC): a forest plot and b funnel plot; and the pooled disease control rate (DCR) of ICIs 
in pMMR/non-MSI-H mCRC: c forest plot and d funnel plot
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been incorporated with chemotherapy, radiotherapy and 
anti-VEGF agent in order to transform immunologically 
“cold” pMMR/non-MSI-H mCRC into responsive “hot” 
lesions. However, the results of such studies have been 
inconsistent [9–14] and the AEs caused by ICIs cannot be 
ignored. To overcome the limitations of individual stud-
ies, we performed a meta-analysis of relevant trials to 
investigate the benefit and safety of ICIs-based therapy for 
pMMR/non-MSI-H mCRC.

Based on the existing studies, the pooled results of 
our study revealed that the addition of ICIs into anti-
VEGF agent plus chemotherapy (especially first-line) 
is promising in pMMR/non-MSI-H mCRC in terms 
of ORR, DCR, PFS, 6-monhs PFS rate and 12-month 
OS rate. At the same time, it has been supported that 

the potential clinical efficacy of anti-VEGF agent plus 
ICIs combination was also founded in other tumors 
such as HCC and NSCLC. For HCC, compared with 
sorafenib monotherapy, atezolizumab plus bevaci-
zumab (IMbrave 150), and Sintilimab plus bevaci-
zumab (ORIENT-32) were founded to significantly 
improve PFS and OS [45, 46]; with regard to NSCLC, 
the addition of atezolizumab to bevacizumab plus 
chemotherapy (IMpower150) significantly improved 
PFS and OS among patients with metastatic nons-
quamous NSCLC, regardless of PD-L1 expression and 
EGFR or ALK genetic alteration status [47], Sintilimab 
plus bevacizumab biosimilar IBI305 and chemotherapy 
(ORIENT-31) improved PFS of patients with EGFR-
mutated non-squamous NSCLC who progressed on 

Table 2 The details of pooled ORR and DCR

Abbreviations: CI confidence interval, PD-(L)1 Programmed cell death-(Ligand) 1, ORR objective response rate, DCR disease control rate, CTLA-4 cytotoxic T 
lymphocyte-associated antigen-4, VEGF vascular endothelial growth factor, EGFR epidermal growth factor receptor, TKIs tyrosine kinase inhibitors

ORR/DCR Pooled rate (95% CI), % No. of cohorts I2 (95% CI), % P for I2 Model Egger’s Test

ORR for ICIs-based therapy 8.5 (4.4–13.5) 38 84.5 (79.7–88.2)  < 0.01 Random effect z = 0.9, p-value = 0.39

ORR for ICIs-based therapy as first-line 74.2 (61.4–85.4) 3 48.5 (0.0–85.0) 0.14 Fixed effect z = -1.6, p-value = 0.12

ORR for ICIs-based therapy as second-
line or beyond

6.4 (3.3–10.4) 28 66.7 (50.5–77.6)  < 0.01 Random effect z = -0.4, p-value = 0.71

ORR-anti-CTLA-4 + anti-PD-(L)1 + radio-
therapy

9.0 (0.9–21.9) 2 43.8 0.18 Fixed effect /

ORR-anti-PD-(L)1 + anti-VEGF + chemo-
therapy

42.4 (10.0–78.6) 5 94.4 (89.8–97.0)  < 0.01 Random effect z = 0.5, p-value = 0.62

ORR-anti-PD-(L)1 + anti-VEGF + chemo-
therapy (first-line)

74.2 (61.4–85.4) 3 48.5 (0.0–85.0) 0.14 Fixed effect z = -1.6, p-value = 0.12

ORR-anti-PD-(L)1 + anti-VEGF + chemo-
therapy (second-line or beyond)

9.5 (4.0–16.7) 2 0.0 0.96 Fixed effect /

ORR-anti-PD-(L)1 + anti-EGFR + chemo-
therapy

9.5 (0.0–53.2) 2 80.3 (15.3–95.4) 0.02 Random effect /

ORR-anti-PD-(L)1 + TKIs 6.1 (1.7–12.4) 12 69.3 (44.3–83.1)  < 0.01 Random effect z = 0.2, p-value = 0.87

ORR-anti-PD-(L)1 + chemotherapy 4.3 (0.6–10.1) 5 27.4 (0.0–71.4) 0.24 Fixed effect z = -0.3, p-value = 0.79

ORR-anti-PD-(L)1 monotherapy 2.7 (0.0–9.4) 3 66.6 (0.0–90.4) 0.05 Random effect z = -0.5, p-value = 0.60

DCR for ICIs-based therapy 48.2 (37.8–58.6) 31 87.9 (83.9–90.9)  < 0.01 Random effect z = -1.2, p-value = 0.23

DCR for ICIs-based therapy as first-line 98.7 (92.0–100.0) 2 18.2 0.27 Fixed effect /

DCR for ICIs-based therapy as second-
line or beyond

45.1 (34.4–56.0) 26 84.8 (78.8–89.1)  < 0.01 Random effect z = -1.4, p-value = 0.16

DCR-anti-CTLA-4 + anti-PD-(L)1 + radio-
therapy

14.9 (0.0–63.6) 2 85.7 (42.7–96.4)  < 0.01 Random effect /

DCR-anti-PD-(L)1 + anti-VEGF + chemo-
therapy

92.0 (68.3–100.0) 3 83.7 (51.0–94.6)  < 0.01 Random effect z = -0.5, p-value = 0.60

DCR-anti-PD-(L)1 + anti-VEGF + chemo-
therapy (first-line)

98.7 (92.0–100.0) 2 18.2 0.27 Fixed effect /

DCR-anti-PD-(L)1 + anti-VEGF + chemo-
therapy (second-line or beyond)

69.6 (49.0–87.0) 1 / / / /

DCR-anti-PD-(L)1 + anti-EGFR + chemo-
therapy

60.9 (39.3–80.7) 2 0.0 0.94 Fixed effect /

DCR-anti-PD-(L)1 + TKIs 59.8 (49.4–69.6) 11 66.9 (37.7–82.5)  < 0.01 Random effect z = -0.5, p-value = 0.64

DCR-anti-PD-(L)1 + chemotherapy 39.5 (12.4–70.2) 4 84.9 (62.4–93.9)  < 0.01 Random effect z = 1.8, p-value = 0.07

DCR-anti-PD-(L)1 monotherapy 25.1 (17.3–33.7) 2 0.0 0.70 Fixed effect /
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Fig. 3 The forest plot of a overall survival (OS) and b progression-free survival (PFS) for ICIs-based versus non-ICIs-based therapy in pMMR/
non-MSI-H mCRC; the forest plot of PFS for c ICIs plus anti-VEGF agent and chemotherapy versus non-ICIs-based therapy, and d RAS wild type (wt) 
versus RAS mutant type (mt) in pMMR/non-MSI-H mCRC 
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EGFR tyrosine-kinase inhibitor therapy [48]. As we 
know, ICIs can effectively alleviate immune escape [49] 
and activate the human immune system to kill tumor 
cells, aims to improve immunity and enhance the anti-
tumor response, then to achieve its anti-tumor effects 
[50, 51]. The limited advantage may be attributed to 
that cancer with pMMR/non-MSI-H has an immune-
desert or immune-excluded (or “cold”) microenviron-
ment, finally resulting in a blunted immune activation 
of tumor microenvironment that causes the futility of 
ICIs in these patients [52]. It has been recorded that 
cytotoxic agents are able to induce immunogenic cell 
death and activate CD8+ T lymphocytes, favoring an 
immune enriched microenvironment as the conse-
quence of the release of tumor-associated neoantigens 
[53]. However, there are a lot of neovascularization 
with special structure in tumor tissue, which makes it 
difficult for antitumor drugs and immune cells to reach 

the tumor site. The VEGF pathway plays a pivotal role 
in establishing and maintaining an immunosuppres-
sive tumor microenvironment. Therefore, the addition 
of anti-VEGF agent has a consistent vessel fortification 
effect in pMMR/non-MSI-H cancer, and can establish 
an immune permissive tumor microenvironment [54]. 
Therefore, the combination of chemotherapy, antian-
giogenic and ICIs might have subadditivity, additivity 
or synergism effects to delays progression in patients 
achieving tumor shrinkage with subsequent release of 
neoantigens and immune activation of tumor microen-
vironment that allows ICIs efficacy [55–57].

Although there was no difference between ICI-
based therapy and non-ICI-based therapy in both OS 
and PFS of pMMR/non-MSI-H mCRC on the whole, 
the subgroup analysis revealed that the addition of 
ICIs to anti-VEGF agent plus chemotherapy could 
significantly improve PFS of pMMR/non-MSI-H 

Table 3 The details of pooled 6-month PFS rate and 12-month OS rate

Abbreviations: PFS progression-free survival, OS overall survival, CI confidence interval, PD-(L)1 Programmed cell death-(Ligand) 1, CTLA-4 cytotoxic T lymphocyte-
associated antigen-4, VEGF vascular endothelial growth factor, EGFR epidermal growth factor receptor, TKIs tyrosine kinase inhibitors

Subgroups Pooled rate (95% 
CI), %

No. of cohorts I2 (95% CI), % P for I2 Model Egger’s Test

6-month PFS rate ICIs based-therapy 32.8 (23.5–42.7) 20 79.4 (68.8- 86.4)  < 0.01 Random effect z = -0.1, p-value = 0.95

anti-PD-(L)1 + chemo-
therapy

23.1 (9.6–39.7) 2 0.0 0.99 Fixed effect /

anti-PD-(L)1 + TKIs 29.3 (17.0–43.2) 10 80.5 (65.1- 89.1)  < 0.01 Random effect z = -1.1, p-value = 0.28

anti-PD-(L)1 + anti-
VEGF + chemotherapy

55.2 (24.8–83.8) 3 80.7 (39.4- 93.8)  < 0.01 Random effect z = 0.5, p-value = 0.60

anti-PD-(L)1 + anti-
EGFR + chemotherapy

39.1 (19.3–60.7) 2 0.0 0.94 Fixed effect /

First-line 71.5 (53.5–86.8) 2 0.0 0.37 Fixed effect /

Second-line or beyond 30.4 (21.5–40.0) 17 77.0 (63.5–85.5)  < 0.01 Random effect z = -0.5, p-value = 0.62

12-month OS rate ICIs based-therapy 52.3 (46.4–58.1) 12 36.0 (0.0- 67.7) 0.10 Fixed effect z = -0.1, p-value = 0.89

anti-PD-(L)1 + TKIs 52.1 (42.9–61.3) 5 0.0 (0.0- 76.2) 0.48 Fixed effect z = 0.3, p-value = 0.80

anti-PD-(L)1 + anti-
VEGF + chemotherapy

71.4 (50.0–89.1) 1 / / / /

anti-PD-(L)1 + anti-
EGFR + chemotherapy

47.8 (26.9–69.1) 2 0.0 0.86 Fixed effect /

First-line 71.4 (50.0–89.1) 1 / / / /

Second-line or beyond 51.2 (45.1–57.3) 10 33.0 (0.0–68.1) 0.14 Fixed effect z = 0.0, p-value = 1.00

Table 4 The pooled AEs

Abbreviations: CI confidence interval, PD-(L)1 Programmed cell death-(Ligand) 1, AE Adverse events, CTLA-4 cytotoxic T lymphocyte-associated antigen-4, VEGF 
vascular endothelial growth factor, EGFR epidermal growth factor receptor, TKIs tyrosine kinase inhibitors

AEs Pooled rate (95% CI), % No. of study I2 (95% CI), % P for I2 Model Egger’s Test

ICIs-based therapy 31.8 (20.1–44.8) 21 89.5 (85.4- 92.5)  < 0.01 Random effect z = -0.1, p-value = 0.95

anti-CTLA-4 + anti-PD-(L)1 + radiotherapy 29.3 (0.0–99.2) 2 95.2 (85.8- 98.4)  < 0.01 Random effect /

anti-PD-(L)1 + TKIs 21.7 (9.4–37.0) 11 88.1 (80.7- 92.7)  < 0.01 Random effect z = 0.0, p-value = 1.0

anti-PD-(L)1 + anti-VEGF + chemotherapy 60.1 (7.6–100.0) 2 93.0 (76.8- 97.9)  < 0.01 Random effect /

anti-PD-(L)1 + chemotherapy 58.0 (17.8–93.1) 3 91.3 (77.5- 96.6)  < 0.01 Random effect z = 1.6, p-value = 0.12
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mCRC; moreover, there was no directly correlation 
between the improvement of PFS and RAS status. At 
the same time, some other advantages of ICI-based 
therapy were still founded among these studies. The 
study conducted by Eng et  al. found that although 
not superior to standard therapy, treatment with the 
combination of ICIs and MEK inhibitor resulted in 
equivalent survival without the introduction of any 
new AEs [10]. Besides, Redman et  al. found that 
despite a lack of improvement in clinical outcomes 
in the experimental arm, the addition of ICIs to 
chemotherapy was biologically active and produced 
multifunctional T-cell responses to cascade antigens 
MUC1 and brachyury [19].

With regard to the safety, the regimens of ICIs 
plus chemotherapy with/without anti-VEGF agent 
revealed higher incidence of grade 3 or beyond AEs. 
Among the included studies, Bocobo et al. found that 
the grade 3 or beyond TRAEs only occurred in 28% 
patients, of which less than half (11%) were immune-
related and none was associated with bevacizumab 
[43]; besides, Redman et  al. revealed that no TRAEs 
were observed outside the expected safety profile 
with the addition of ICIs to bevacizumab plus chemo-
therapy, and most TRAEs were chemotherapy-related 
and controllable [19].

The best strategy and biomarkers of ICIs for 
pMMR/non-MSI-H mCRC remain to be established. 
On one hand, in order to seek the best strategy of 
ICIs-based therapy for pMMR/non-MSI-H mCRC, we 
are obliged to optimize which regimen is beneficial in 
combination with ICIs (with maximizing efficacy and 
minimizing toxicity), facilitate clinical research based 
on biomarkers, and explore the development of other 
ICIs drugs and cell-based treatment schemes [58]; on 
the other hand, in screening the beneficiaries of ICIs 
for pMMR/non-MSI-H mCRC, we need to further 
seek appropriate biomarkers (such as TMB, PD-L1 
expression, tumor infiltrating lymphocytes (TILs), 
and status of polymerase ε (POLE), neutrophil to lym-
phocyte ratio (NLR), and platelet-lymphocyte ratio 
(PLR)) [59–62]. Moreover, prospective, larger con-
firmatory and translational studies are recommended 
in the future.

Limitations
This study came up with three drawbacks as follows: 
firstly, there were only 4 RCTs, despite containing 39 
cohorts 1723 patients, for analyzing the efficacy and 
safety of ICIs in pMMR/ non-MSI-H mCRC; secondly, 
considering the limited number of studies with survival 
outcomes for ICIs in pMMR/non-MSI-H mCRC patients, 
we took the ORR and DCR as primary endpoints; finally, 

only studies published in English were included, which 
might yield language bias to some degree.

Conclusions
ICIs-based combination therapy, especially the addition 
of ICIs to first-line anti-VEGF agent plus chemotherapy, 
is promising in pMMR/non-MSI-H mCRC with good 
efficacy and controllable toxicity.
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microsatellite instability-high (non-MSI-H) metastatic colorectal cancer 
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mCRC: (c) forest plot and (d) funnel plot.
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