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Abstract

Background: The assortment of cattle immunoglobulin and surrogate light chain genes has been
extracted from the version 3.1 of Bos taurus genome sequence as a part of an international effort
to sequence and annotate the bovine genome.

Results: 63 variable lambda chain and 22 variable kappa chain genes were identified and
phylogenetically assigned to 8 and 4 subgroups, respectively. The specified phylogenetic
relationships are compatible with the established ruminant light chain variable gene families or
subgroups. Because of gaps and uncertainties in the assembled genome sequence, the number of
genes might change in the future versions of the genome sequence. In addition, three bovine
surrogate light chain genes were identified. The corresponding cDNAs were cloned and the
expression of the surrogate light chain genes was demonstrated from fetal material.

Conclusion: The bovine kappa gene locus is compact and simple which may reflect the
preferential use of the lambda chain in cattle. The relative orientation of variable and joining genes
in both loci are consistent with a deletion mechanism in V] joining. The orientation of some variable
genes cannot be determined from the data available. The number of functional variable genes is
moderate when compared to man or mouse. Thus, post-recombinatorial mechanisms might
contribute to the generation of the bovine pre-immune antibody repertoire. The heavy chains
probably contribute more to recombinational immunoglobulin repertoire diversity than the light
chains but the heavy chain locus could not be annotated from the version 3.1 of Bos taurus genome.

Background

Immunoglobulins are the molecular mediators of the
adaptive humoral immune response in jawed vertebrates.
Somatic recombination during B lymphoid differentia-
tion is required for immunoglobulin expression [1]. In
the germline state, the genes encoding for the variable (V),
diversity (D) and joining (J) segments are dispersed across
a wide genomic stretch. A process called V(D)] joining

brings together the specific genes for each segment type
and thereby creates the second exon of a transcriptionally
competent immunoglobulin gene. The recombination
machinery consists of two recombination activating gene
products RAG1 and RAG2 as well as various other pro-
teins, reviewed in [2]. The cis-acting recognition signal
sequences (RSSs) target the recombination machinery to
the correct genomic site. Each RSS consists of heptamer
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and nonamer motifs flanking a 12 or 23 bp long central
spacer. In the rearranging locus, two variably separated
double strand DNA breaks are introduced next to one 12
bp and one 23 bp RSS. The nascent non-homologous
DNA ends are joined into a coding joint in the middle of
the recombined gene. The DNA fragment between the
breaks is either deleted or inverted depending on the rela-
tive orientation of the recombining genes.

The immunoglobulin heavy chain and light chain rear-
rangements in many species are temporally separated dur-
ing B cell development. In mouse and man but not in
chicken, a population of cells can be demonstrated that
has undergone rearrangement only in the immunoglobu-
lin heavy chain locus [3,4]. A surrogate light chain (SLC)
is temporarily expressed at this stage of the B cell develop-
ment [5]. SLC is composed of two polypeptides VPREB
and IGLL1 that are homologous to the variable and the
constant domain of the immunoglobulin light chain,
respectively [6]. In mice, three VPREB paralogues VPREB1,
VPREB2 and VPREB3 have been described [7,8]. The
IGLV-like VPREB?2 is missing from the human genome.
Gene targeting studies demonstrate the role of SLC genes
in the production of B cells [9].

The genome sequence of Bos taurus permits for the first
time a direct estimate of the size of the immunoglobulin
light chain gene pool in domestic cattle, one of the most
important farm animal species. We have characterized the
structure and composition of bovine immunoglobulin
and surrogate light chain gene loci as a part of a commu-
nity effort to annotate the version 3.1 assembly of Bos tau-
rus genome sequence [10].

Results

The bovine immunoglobulin lambda (X) chain locus is
located on chromosome 17. In version 3.1 of the genome
sequence (Btau_3.1), 63 variable, 3 joining and 5 con-
stant genes could be identified in 10 scaffolds. 25 A varia-
ble genes (ca. 41%) fulfilled the criteria for classification
as potentially functional (see Methods and Additional file

1).

Based on the phylogenetic analyses and nucleotide
sequence identities in a gene region corresponding to
FR1-FR3, the A variable genes can be grouped into 8 phy-
logenic subgroups (figure 1, Additional files 1 and 2). The
A variable gene subgroups in the present work accommo-
date all the characterized bovine IGLV genes from [11]
and most of the ovine IGLV genes [12-15]. Interspecies
comparison revealed that four of the six described ovine
gene families or subgroups [12-15] are represented in the
bovine collection (figure 1 and Additional file 2) and con-
tain 43 (ca. 68%) of the bovine genes. As can be seen from
Additional file 1, subgroup 1 is the largest and contains 16
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(ca 64%) of the potentially functional A variable genes.
This subgroup seems to be ruminant specific as no human
or mouse genes co-segregate with its members. Subgroups
2 and 6 are each represented in the genome by a single
subgroup-specific gene cluster. The 13 bovine genes of
subgroup 5 are all pseudogenes as are the ovine genes in
this subgroup. With the exception of one gene, the bovine
(but not the ovine) genes in this subgroup share an in-
frame stop codon in framework 3 (not shown). 20 genes
(ca. 32%) of which 3 are potentially functional do not co-
segregate with any members of the established ovine A
variable gene subgroups. However, A variable genes in the
bovine subgroups 7, 8 and 9 are similar to genes in
human specific subgroups 5, 8 and 9 respectively (i.e.,
80% nucleotide sequence identity in a gene region corre-
sponding to FR1-FR3; not shown). No ovine, human or
mouse genes closely related to IGLV41,IGLV47 or IGLV53
could be identified. Further, no bovine genes from the
current assembly could be mapped to the established
ovine families III or IV [12-15].

Three immunoglobulin lambda joining and five immu-
noglobulin lambda constant genes were identified (Addi-
tional file 1). Two of the J-C gene pairs form apparently
functional units. IGLC1 and IGLC2 have identical coding
sequence but differ at 3'UTR. Chen et al. [16] described
four IGLC genes which correspond to IGLC2-IGLC5 in this

paper.

The bovine immunoglobulin k locus is located in chro-
mosome 11. A blast search against Btau_3.1 revealed
matches only at a single location in scaffold
Chr11.003.53. 22 variable, 3 joining and one constant
immunoglobulin k gene were identified. 8 variable genes
(ca. 36%) were classified as potentially functional (Addi-
tional file 3). The variable k genes can be grouped in 4
phylogenic subgroups preserving the established ovine
specific gene families (figure 2 and Additional file 4). 21
(ca. 95%) of the bovine genes co-segregate with ovine k
variable gene families [, Il and IV [15]. Subgroup 2 is the
largest and contains 7 (ca. 88%) of the potentially func-
tional genes. All the seven members of subgroup 1 are
pseudogenes.

Surrogate light chain genes VPREB1, IGLL1 and VPREB3
were identified in the assembly at or close to the A chain
locus. The VPREB1 and IGLL1 lie next to each other as in
the mouse genome [8]. VPREB3 is located close to the
immunoglobulin A constant genes IGLC1-IGLC4 but in
the opposite transcriptional orientation. None of the sur-
rogate light chain genes is flanked by an RSS. The exon-
intron boundaries of the surrogate light chain genes are
conserved between cow, mouse and man (not shown).
The VPREB1 and VPREB3 gene structures resemble those
of the immunoglobulin X variable genes with a leader and
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Figure |

Phenogram of ruminant immunoglobulin A variable genes. Sequences corresponding to the V region but excluding
CRD3 were aligned and phylogenetically analyzed as described in the methods. IGKV/ | was used as an outgroup. Ovine
genomic sequences 1.2, 1.3,2.1,2.2,3,3.1,4.1,4.2,5.1,5.2,5.3,54, 6.1,6.2,8.0,9, 10, 12.1, 12.2, 16.1, 16.2, 17, 18, 26.1, 26.2,
26.3 (AF040900-AF040924, M60441) are from Reynaud et al. [13] Ovine sequences 6a, 6b, 6c and 6d (AF038145-AF038148)

are derived from cDNA [14].
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Figure 2

Phenogram of ruminant immunoglobulin k variable genes. Sequences corresponding to the V region but excluding
CRD3 were aligned and phylogenetically analyzed as described in the methods. IGLVé was used as an outgroup. The ovine
sequences |, 2.1,2.2,2.3, 3 and 4 (AF038133—-AF038138) are derived from cDNA [14].
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main exon. Successful cloning of the cDNAs using primers
that span the exon/intron boundaries and extend far into
the 3'UTR of the germline genes confirms that the mRNA
expression of surrogate light chain genes does not depend
on recombination. The functionality of the surrogate light
chain genes was additionally supported by demonstrating
the expression of VPREB1, VPREB3 and IGLL1 mRNA in
fetal liver, spleen, bone marrow, lymph node and thymus
(figure 3).

The cDNA and genomic DNA sequence analysis of the
surrogate light chain genes revealed several single nucle-
otide differences in comparison with the reference
genomic sequence (Additional file 5). Therefore, it seems
that the bovine surrogate light chain genes are polymor-
phic.

Discussion

In this paper, we have presented the analysis of the immu-
noglobulin and surrogate light chain gene assortment
extracted from the Bos taurus genome sequence Btau_3.1
[10]. Btau_3.1 is nearly completely based on a whole
genome shotgun sequence from a single animal (L1 Dom-
inette 01449) with a 30% inbreeding coefficient [10,17].
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This facilitates the analysis of immunoglobulin genes,
which is in mixed databases greatly complicated by gene
polymorphism and targeted somatic mutations [18].
Most of the functional light chain genes have probably
been included in our gene set although the exact number
of genes is likely to change in the future genome versions.
32 ) variable genes were in genomic contigs not assigned
to a specific chromosomal location and might include
orphons.

An interspecies comparison suggests ruminant specific
adaptations:

(1.) The bovine « locus appears small and uncomplicated
when compared with the A locus (see figure 4). This might
reflect the preferential use of the A light chain in cattle
[19].

(2.) In cattle, the number of functional immunoglobulin
light chain genes is markedly lower than in mice and in
man, i.e. 33 vs. 105 and 77 [20]. Further, the variation in
CDR1 length is more restricted and the number of unique
CDR1-CDR2 combinations is lower than in mice and
man (see table 1). Even though some genes might be
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Expression of VPREB I, VPREB3, and IGLLI in bovine fetuses. Gene expression was analyzed by RT-PCR as described
in methods. The individual animals and their estimated fetal ages are indicated on top. The amplicon lengths were: 558 bp

(VPREBI), 491 bp (VPREB3), 475 bp (IGLLI) and 150 bp (GAPDH). V|

bone marrow, nd = not determined.

= VPREBI, V3 = VPREB3, L5 = IGLLI, G = GAPDH, bm =
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Figure 4

Schematic organization of the kappa, lambda and surrogate light chain genes in Btau_3.1 scaffolds. The genes on
the plus strand are projected above and those on minus strand below the scaffold line. Long projection stands for an apparently
functional gene and a short projection for a nonfunctional gene. Scale bar: 100 kb. A: Lambda and surrogate light chain genes. B:

Kappa light chain genes.

missing from Btau_3.1, the number of potentially func-
tional bovine light chain genes probably overestimates
the bona fide functional genes for which protein evidence
is required. We are not aware of any other approximations
on the number of functional immunoglobulin genes in
ruminants. By extrapolation, the total number of A varia-
ble gene segments in the sheep genome has been esti-
mated from 60-90 [14] to 150 [18]. The latter estimate is,
however, based on cDNA data.

(3.) The phylogenetic analysis suggests that most of the
potentially functional A genes belong to a single subgroup

(subgroup 1, see additional file 6) that is not apparent in
the human or in the mouse genomes but is present in
sheep genome. This subgroup comprises 21 variable genes
of which 16 are potentially functional. The CDR1 [21] is
either 8 or 9 amino acids long with a characteristic hydro-
phobic residue at position 30. Based on similarities on
primary sequences, the CDR 1 structures among the mem-
bers of subgroup 1 correspond most closely to the canon-
ical loop 1 structures 1 and 2 found on A chain variable
regions [22]. CDR2 is 3 amino acids long and probably
adopts a hair pin structure commonly found on CDR2 of
A and « light chains [22]. It remains to be seen whether or

Page 6 of 11

(page number not for citation purposes)



BMC Immunology 2009, 10:22 http://www.biomedcentral.com/1471-2172/10/22

Table I: Characteristics of CDRI and CDR2 in the variable regions of bovine, mouse and human light chains

cattle mouse man
lambda chain variable region
CDRI length (amino acids) 6,89 7,89 6,7,8,9
CDR2 length (amino acids) 3,7 3,7 3,7
unique IGLV CDRI/CDR?2 pairs 19 8 37
kappa chain variable region
CDRI length (amino acids) 6,10,11 5,6,7,10,11,12 6,7,10,11,12
CDR2 length (amino acids) 3 3 3
unique IGKV CDRI/CDR?2 pairs 5 94 27

The data on human and murine immunoglobulins are from IMGT database [20].

not the CDRs adopt any of the established canonical of joining and constant genes all in one transcriptional ori-
immunoglobulin structures in reality. No high resolution  entation [24]. However, recombination using inversion
structures are currently available for bovine immunoglob-  cannot be ruled out in the bovine A chain locus at present.
ulins in the PDB archives [23]. In contrast to what is found in man and cattle, the murine

A chain locus is much reduced in size (only about 240 kb)
(4.) The apparent expansion of the pseudogene subgroup  and contains two small clusters of different immunoglobu-

5 is intriguing although the reasons behind this are cur-  lin lambda chain genes [reviewed in [25]].
rently elusive. 12 subgroup members out of 13 share an
identical stop codon in framework 3. The « chain locus is much less complicated in cattle than

in man or mouse. All identified x genes were localized to
The data on the overall organization of the bovine A chain ~ a ca. 280 kb genomic segment within Chr11.003.53
locus is still quite fragmentary (figure 4). It could resemble ~ (Additional file 3 and figure 4). In comparison, the k
the human locus, which displays a 900 kb long upstream  locus spans ca. 1.8 Mb in man [26] and ca. 3.2 Mb in
region of 73 to 74 variable genes followed by 7 to 11 pairs  mouse [27,28]. The relative orientation of the bovine

£
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i|33241|emb|X03957.1] 11 71,08 166 45 3 876 1040 1602192 1602355 2,00E-013 73,4
Alignment:
Query: 476 acacgcagcctgggtgggactccaggagccagcetcttaccctadagtttctgdacgggea 535

Free reerrerrrr Freee o rrrrerrrerrer rgrreerrrrnger el
Sbjct: 1601749 acactcagcctgggtaagag-ccagggcccagctcttaccccagagtttctgcacaggeca 1601807

Query: 536 gcaggttggcagcgcaractgtgpggageccctagtggcageccagggecgactect 589
Feerreeererr rqprerergerererrrr et rrrrrr et e
Sbjct: 1601808 gcagattggcagcactcactgtgggagccctagtagcagecccagtgaggetecct 1601861

Figure 5

Pair wise alignment of the human kappa deleting element [gi = 33241] and Chr11.003.59. Upper part: tabular out-
put from bl2seq. The following parameters were used: blastn matrix: 2, -3; gap open: 5, gap extension: 2. Lower part: local
alignment about 28.5 kb downstream from IGKCI. Heptanucleotide and nonanucleotide boxes are emphasized.
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Table 2: Gene specific primers used in this study

Primer Sequence

VPREBI

VPREBI-f2 CE 5'-catgtcctgggeectegt-3'
VPREBI-rl CE 5'-gcccagectecttgtecac-3'
VPREB3

VPREB3-fwl CE 5'-tgtgtggaggtcccgaag-3'
VPREB3-fw2 Cc 5'-cgcagaacagcggactect-3'
VPREB3-rev| CE 5'-aggtcaggagtagaagtgg-3'
IGLLI

L5-fIb C 5'-ccagegegtctgeccaag-3'
L5-f2c E 5'-tgctggetgggegtetgg-3'
L5-r3a CE 5'-agaagggacgtaggggaccat-3'
GAPDH

QGAPDfw E 5'-ctgacctgeegectggag-3'
QGAPDrev E 5'-aagagtgagtgtcgctgttgaag-3'

The use of each primer is indicated: C (cloning of the full length
cDNA), E (RT-PCR expression analysis).

genes allows recombination exclusively by deletion. In
mice, the relative orientation of more than 75 of the 140
murine k variable genes supports inversion [29,30]. In
man, a large duplication has produced nearly identical
copies of 34 variable k genes ca. 800 kb upstream in an
opposite orientation. In addition, 2 variable genes most
proximal to the J-C gene region support inversion [26]. A
kappa deleting element (kde) homologous to the murine
recombining sequence (RS) is located about 24 kb down-
stream of the human « locus [31]. A permanent disrup-
tion of one or both « loci by a recombination involving
kde (RS) is a frequent finding in human and murine B
cells that produce the A light chain [32,33]. Interestingly,
a highly similar sequence to kde is located 28.5 kb down-
stream of the bovine « locus (see figure 5).

The heavy chain locus could not be annotated as most of
it is missing from Btau_3.1. The available data on the light
chain loci suggests that a moderate number of potentially
functional light chain genes exist in the bovine genome.
Although the heavy chains add more to the recombinato-
rial diversity of immunoglobulins than the light chains,

http://www.biomedcentral.com/1471-2172/10/22

post-recombinatorial mechanisms might also contribute
to a fully blown bovine preimmune repertoire. The rela-
tive importance of V(D)] recombination for the genera-
tion of the preimmune repertoire in ruminants is
currently controversial [14,18]. In late fetal and neonatal
sheep, however, the repertoire is expanded by somatic
hypermutation in the ileal Peyer's patch [12,13].

Surrogate light chain (SLC) is needed to expand the H+L-
cell population in species in which heavy and light chain
genes are sequentially arranged. This assures that suffi-
cient number of cells productively rearrange both loci
[34]. The expression of SLC genes in the bovine fetal tis-
sues (figure 3) confirms their functionality. The data pre-
sented in this paper does not permit further conclusions
on the role of SLC genes in cattle. Nevertheless, analyses
of serial sections by immunohistochemistry have revealed
specific sites in the bovine fetus where there are no light
chain positive cells but which still contain heavy chain
positive cells (Ekman and livanainen, unpublished).

Conclusion

This study describes the bovine assortment of immu-
noglobulin and surrogate light chain genes based on
Btau_3.1. A large fraction of the potentially functional var-
iable genes belong to subgroups that are shared between
cattle and sheep but not found in man or in mouse. The
number of functional light chain variable genes in
Btau_3.1 is moderate in comparison with the correspond-
ing number in the human or mouse genomes. The new
data on the immunoglobulin light chain genes provides
novel insight on the humoral immune system of rumi-
nants and should facilitate the development of vaccines
and other therapeutic tools against cattle specific infec-
tious diseases.

Methods

Gene identification and annotation

An iterative blast search against the bovine genomic
sequence database was performed via Ensembl genome
browser [35]. The initial query sequences were bovine
light chain variable gene encoded cDNAs with frequent
matches in the dbEST database at the National Center for
Biotechnology Information [36]. Genome-wide annota-
tion evidence based on Swiss-Prot, TTEMBL and various
other databases at GenBank, EMBL and DDBJ were pro-
vided by The Wellcome Trust Sanger Institute [37] and by
the Bovine Genome Database [38]. Annotation of the
genomic sequence and its comparison against the various
evidence entries was carried out using Apollo [39], Otter-
lace [40] and blast [41].

Functional and phylogenetic analyses of genes
Sequence extractions were done in the European Molecu-
lar Biology Open Software Suite [42]. The extracted genes
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were further analyzed using the following criteria: (a) an
uninterrupted open reading frame, (b) consensus splice
sites at exon/intron boundaries, (c) the presence of four
conserved framework residues C23, W41, L89 and C104
for the variable and constant genes, and F/W-G-X-G motif
for the joining genes [21], and (d) a likely functional
recombination signal sequence. In functional recombina-
tion assays, the spacer length and three outmost nucle-
otides of the heptamer have been shown to be the most
critical parameters for efficient recombination [43].

Multiple alignments of genomic sequences corresponding
to regions spanning from FR1 up to but excluding CDR3
[21] were performed using a global alignment strategy in
the MAFFT package, version 6.603b [44]. Evolutionary
distances were computed and phylogenetic trees con-
structed in PHYLIP, version 3.67 [45] using the F84 model
for nucleotide substitution and neighbor joining algo-
rithm, respectively. The reliability of the tree topologies
were evaluated using the bootstrap test (n = 1000) in
PHYLIP. The consensus tree was calculated using majority
rule in the Consense consensus tree program in PHYLIP.

Since the complete gene pool is not available, ad hoc gene
names are used in this paper. The variable gene families or
subgroups identified in cattle [11] and in sheep [12-15]
are used where the phylogenetic analyses indicate a close
relationship. Furthermore, nucleotide sequence identity
matrix for the gene region corresponding to FR1-FR3
(e.g., amino acids 1 to 104 in the IMGT numbering system
[21]) was calculated from globally aligned sequences
using the BioEdit Sequence Alignment Editorv. 7.0.9 [46].
Truncated or incomplete genes IGVL59, IGLV61, IGLV62
and IGLV63 were excluded from the initial alignment.
They were subsequently assigned to the respective sub-
groups by phylogenetic analysis in PHYLIP, based on
alignments using the local alignment strategy in the
MAFFT package (Additional file 1).

Cloning and expression analysis of the surrogate light
chain genes

Bovine fetal material was obtained from a local slaughter-
house. The use of animal tissues was approved by the local
animal welfare authorities. Total RNA was isolated from
muscle, thymus, liver, spleen, lymph node and bone mar-
row of fetuses at 135, 175, 190, 210 and 230 days of ges-
tational age [47]. 50 - 400 mg of frozen tissue was
crushed with a mortar, suspended in Eurozol RNA extrac-
tion reagent (Euroclone) and homogenized using Poly-
tron PT1200 homogenizer (Kinematica AB) with a 5 mm
cutter. The extraction procedure was carried out according
to manufacturer's instructions. RNA was further purified
by precipitating with 2.5 M LiCl (Sigma) and dissolved in

http://www.biomedcentral.com/1471-2172/10/22

water. Prior to reverse transcription RNA was treated with
RQ1 DNAse (Promega) to remove possible genomic con-
tamination. In the reverse transcription reaction 20 pmol
of oligo(dT) primer was added to 1 ug of total RNA, and
RevertAid M-MuLV reverse transcriptase (Fermentas) was
used according to manufacturer's instructions. RiboLock
ribonuclease inhibitor (Fermentas) was added to the reac-
tion.

For the amplification and cloning of the full length
cDNAs, the following primers were used: VPREB1-f2 and
VPREB1-r1, VPREB3-fw1, VPREB3-fw2 and VPREB3-rev1,
L5-f1b and L5-r3a (table 2). Purified PCR fragments were
ligated to a pSTBlue-1 vector (Novagen). For each cDNA,
several clones were sequenced on ABI3130 XL 16-capil-
lary sequencer at the DNA-sequencing core facility at the
University of Helsinki using fluorescently labeled
BigDye™ dideoxynucleotides. To confirm suspected poly-
morphisms in the VPREB1, VPREB3 and IGLL1 genes, a
selection of cDNA clones from lymph node and bone
marrow, and PCR products from genomic DNA were
sequenced.

The expression of VPREB1, VPREB3 and IGLL1 surrogate
light chain genes was confirmed by RT-PCR using the fol-
lowing RNA preparations (age in gestational days): bone
marrow (135d, 175d, 190d, 210d, 230d), liver (135d,
175d, 190d, 210d, 230d), lymph node (190d, 210d,
230d), muscle (135d, 190d, 210d, 230d), spleen (135d,
175d, 190d, 210d, 230d), and thymus (135d, 175d,
190d, 210d, 230d). Expression of the housekeeping gene
GAPDH was used to monitor the variation in RNA quality
and quantity. GAPDH specific control RT-PCRs without
reverse transcriptase did not yield any products (not
shown). For primers, see table 2.

Abbreviations

H: heavy chain; L: light chain; FR: framework region; CDR:
complementarity determining region; RSS: recombination
signal sequence; IGLV: immunoglobulin lambda variable;
IGLJ: immunoglobulin lambda joining; IGLC: immu-
noglobulin lambda constant; IGKV: immunoglobulin kappa
variable; IGKJ: immunoglobulin kappa joining IGKC:
immunoglobulin kappa constant; VPREB: pre-B lymphocyte
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Table S5 - Single nucleotide differences in VPREB1, VPREB3 and
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